Difference between revisions of "Boundary value problem, ordinary differential equations"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b0173701.png | ||
+ | $#A+1 = 60 n = 0 | ||
+ | $#C+1 = 60 : ~/encyclopedia/old_files/data/B017/B.0107370 Boundary value problem, ordinary differential equations | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The problem of finding a solution to an equation | The problem of finding a solution to an equation | ||
− | + | $$ \tag{1 } | |
+ | |||
+ | \frac{dx }{dt } | ||
+ | = \ | ||
+ | f (t, x),\ \ | ||
+ | t \in J,\ \ | ||
+ | x \in \mathbf R ^ {n} , | ||
+ | $$ | ||
− | lying in a given subset | + | lying in a given subset $ D $ |
+ | of the space $ D (J, \mathbf R ^ {n} ) $ | ||
+ | of functions depending on $ t $ | ||
+ | that are absolutely continuous on $ J $ | ||
+ | and that assume values in $ \mathbf R ^ {n} $: | ||
− | + | $$ \tag{2 } | |
+ | x ( \cdot ) \in D. | ||
+ | $$ | ||
− | It is assumed that | + | It is assumed that $ f (t, x) $ |
+ | is a function defined on $ J \times \mathbf R ^ {n} $ | ||
+ | with values in $ \mathbf R ^ {n} $ | ||
+ | and satisfying the Carathéodory conditions; $ J $ | ||
+ | is an interval on the real line $ \mathbf R $. | ||
1) The boundary value problem (1), (2) is said to be linear if | 1) The boundary value problem (1), (2) is said to be linear if | ||
− | + | $$ | |
+ | f (t, x) \equiv \ | ||
+ | A (t) x + b (t), | ||
+ | $$ | ||
− | where the functions | + | where the functions $ A (t) $ |
+ | and $ b (t) $ | ||
+ | are summable on every compact interval in $ J $ | ||
+ | and the set $ D $ | ||
+ | is a linear manifold in $ D (J, \mathbf R ^ {n} ) $. | ||
+ | In particular, one might have | ||
− | + | $$ | |
+ | J = \ | ||
+ | [t _ {0} , t _ {1} ], | ||
+ | $$ | ||
− | + | $$ | |
+ | D = \left \{ x ( \cdot ) \in D (J, \mathbf R | ||
+ | ^ {n} ): \int\limits _ { t _ {0} } ^ { {t _ 1 } } [d \Phi (t)] x (t) = 0 \right \} , | ||
+ | $$ | ||
− | where | + | where $ \Phi (t) $ |
+ | is a function of bounded variation. A linear boundary value problem gives rise to a linear operator | ||
− | + | $$ | |
+ | Lx (t) \equiv \ | ||
+ | x ^ \prime - A (t) x,\ \ | ||
+ | x ( \cdot ) \in D, | ||
+ | $$ | ||
− | the eigen values of which are precisely those values of the parameter | + | the eigen values of which are precisely those values of the parameter $ \lambda $ |
+ | for which the homogeneous boundary value problem | ||
− | + | $$ | |
+ | x ^ \prime - A (t) x = \lambda x,\ \ | ||
+ | x ( \cdot ) \in D, | ||
+ | $$ | ||
− | has non-trivial solutions. These non-trivial solutions are the eigen functions of the operator | + | has non-trivial solutions. These non-trivial solutions are the eigen functions of the operator $ L $. |
+ | If the inverse operator $ L ^ {-1} $ | ||
+ | exists and has an integral representation | ||
− | + | $$ | |
+ | x (t) = \ | ||
+ | L ^ {-1} b (t) \equiv \ | ||
+ | \int\limits _ { J } G (t, s) | ||
+ | b (s) ds,\ \ | ||
+ | t \in J, | ||
+ | $$ | ||
− | then | + | then $ G (t, s) $ |
+ | is called a Green function. | ||
− | 2) Let | + | 2) Let $ J = (- \infty , \infty ) $, |
+ | let $ f (t, x) $ | ||
+ | be almost-periodic in $ t $ | ||
+ | uniformly in $ x $ | ||
+ | on every compact subset of $ \mathbf R ^ {n} $ | ||
+ | and let $ D $ | ||
+ | be the set of almost-periodic functions in $ t $ | ||
+ | that are absolutely continuous on $ J $. | ||
+ | Then problem (1), (2) is known as the problem of almost-periodic solutions. | ||
3) In control theory one considers boundary value problems with a functional parameter: a control. For example, consider the equation | 3) In control theory one considers boundary value problems with a functional parameter: a control. For example, consider the equation | ||
− | + | $$ \tag{3 } | |
− | with set of admissible controls | + | \frac{dx }{dt } |
+ | = \ | ||
+ | f (t, x, u),\ \ | ||
+ | t \in J = | ||
+ | [t _ {0} , t _ {1} ],\ \ | ||
+ | x \in \mathbf R ^ {n} , | ||
+ | $$ | ||
+ | |||
+ | with set of admissible controls $ U $ | ||
+ | and two sets $ M _ {0} , M _ {1} \subset \mathbf R ^ {n} $. | ||
+ | Let $ D $ | ||
+ | be the set of absolutely continuous functions in $ t $ | ||
+ | such that $ x (t _ {0} ) \in M _ {0} $, | ||
+ | $ x (t _ {1} ) \in M _ {1} $. | ||
+ | The boundary value problem is to find a pair $ (x _ {0} ( \cdot ), u _ {0} ( \cdot )) $ | ||
+ | such that $ u _ {0} ( \cdot ) \in U $ | ||
+ | and the solution $ x _ {0} (t) $ | ||
+ | of equation (3) at $ u = u _ {0} (t) $ | ||
+ | satisfies the condition $ x _ {0} ( \cdot ) \in D $. | ||
4) There is a wide range of diverse necessary and sufficient conditions for the existence and uniqueness of solutions to various boundary value problems, and of methods for constructing an approximate solution (see [[#References|[4]]]–[[#References|[7]]]). For example, consider the problem | 4) There is a wide range of diverse necessary and sufficient conditions for the existence and uniqueness of solutions to various boundary value problems, and of methods for constructing an approximate solution (see [[#References|[4]]]–[[#References|[7]]]). For example, consider the problem | ||
− | + | $$ \tag{4 } | |
+ | \left . | ||
+ | \begin{array}{c} | ||
+ | |||
+ | x ^ \prime = A (t) x + f (t, x), | ||
+ | \\ | ||
+ | |||
+ | \int\limits _ { t _ {0} } ^ { {t _ 1 } } | ||
+ | [d \Phi (t)] x (t) = 0, | ||
+ | \end{array} | ||
+ | \ | ||
+ | \right \} | ||
+ | $$ | ||
in which | in which | ||
− | + | $$ | |
+ | \| f (t, x) \| | ||
+ | \leq a + b \ | ||
+ | \| x \| ^ \alpha | ||
+ | $$ | ||
− | for certain constants | + | for certain constants $ a > 0, b > 0, \alpha \geq 0 $. |
+ | Suppose that the homogeneous problem | ||
− | + | $$ \tag{5 } | |
+ | x ^ \prime = A (t) x,\ \ | ||
+ | \int\limits _ { t _ {0} } ^ { {t _ 1 } } | ||
+ | [d \Phi (t)] x (t) = 0 | ||
+ | $$ | ||
− | is regular, i.e. its only solution is the trivial one. Then problem (4) has at least one solution, provided either < | + | is regular, i.e. its only solution is the trivial one. Then problem (4) has at least one solution, provided either $ \alpha < 1 $, |
+ | or $ \alpha \geq 1 $ | ||
+ | and $ b $ | ||
+ | is sufficiently small. It is fairly complicated to determine whether problem (5) is regular. However, the linear (scalar) boundary value problem | ||
− | + | $$ | |
+ | x ^ {\prime\prime} + q (t) | ||
+ | x ^ \prime + p (t) x = 0,\ \ | ||
+ | x (t _ {0} ) = 0,\ \ | ||
+ | x (t _ {1} ) = 0, | ||
+ | $$ | ||
− | for example, is regular if whenever | + | for example, is regular if whenever $ | q (t) | \leq 2m $ |
+ | there exists a $ k \in \mathbf R $ | ||
+ | such that | ||
− | < | + | $$ |
+ | \int\limits _ { t _ {0} } ^ { {t _ 1 } } | ||
+ | [p (t) - k] _ {+} dt < \ | ||
+ | 2 [F (k, m) - m], | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | F (k, m) = \ | ||
+ | \left \{ | ||
+ | |||
+ | \begin{array}{l} | ||
+ | \sqrt {k - m ^ {2} } | ||
+ | \mathop{\rm cotg} \ | ||
+ | { | ||
+ | \frac{(t _ {1} - t _ {0} ) | ||
+ | \sqrt {k - m ^ {2} } }{2} | ||
+ | } , \\ | ||
+ | \ \ m ^ {2} < k \leq m ^ {2} + | ||
+ | |||
+ | \frac{\pi ^ {2} }{(t _ {1} - t _ {0} ) ^ {2} } | ||
+ | , \\ | ||
+ | |||
+ | \frac{2}{t _ {1} - t _ {0} } | ||
+ | ,\ \ | ||
+ | k = m ^ {2} , \\ | ||
+ | \sqrt {m ^ {2} - k } \ | ||
+ | \mathop{\rm cotg} \ | ||
+ | { | ||
+ | \frac{(t _ {1} - t _ {0} ) | ||
+ | \sqrt {m ^ {2} - k } }{2} | ||
+ | } ,\ \ | ||
+ | k < m ^ {2} . \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right .$$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Krasnosel'skii, V.Sh. Burd, Yu.S. Kolesov, "Nonlinear almost-periodic oscillations" , Wiley (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, "The mathematical theory of optimal processes" , Interscience (1962) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.N. Krasovskii, "Theory of control of motion. Linear systems" , Moscow (1968) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.I. Zubov, "Lectures in control theory" , Moscow (1975) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint (1971)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> I.T. Kiguradze, "Some singular boundary value problems for ordinary differential equations" , Tbilisi (1975) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Krasnosel'skii, V.Sh. Burd, Yu.S. Kolesov, "Nonlinear almost-periodic oscillations" , Wiley (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, "The mathematical theory of optimal processes" , Interscience (1962) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.N. Krasovskii, "Theory of control of motion. Linear systems" , Moscow (1968) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.I. Zubov, "Lectures in control theory" , Moscow (1975) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint (1971)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> I.T. Kiguradze, "Some singular boundary value problems for ordinary differential equations" , Tbilisi (1975) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Braun, "Differential equations and their applications" , Springer (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) pp. §§3.6, 3.51, 4.7, A.5</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L.K. Jackson, "Boundary value problems for ordinary differential equations" J.K. Hale (ed.) , ''Studies in ordinary differential equations'' , Math. Assoc. Amer. (1977) pp. 93–127</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Braun, "Differential equations and their applications" , Springer (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) pp. §§3.6, 3.51, 4.7, A.5</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L.K. Jackson, "Boundary value problems for ordinary differential equations" J.K. Hale (ed.) , ''Studies in ordinary differential equations'' , Math. Assoc. Amer. (1977) pp. 93–127</TD></TR></table> |
Latest revision as of 06:29, 30 May 2020
The problem of finding a solution to an equation
$$ \tag{1 } \frac{dx }{dt } = \ f (t, x),\ \ t \in J,\ \ x \in \mathbf R ^ {n} , $$
lying in a given subset $ D $ of the space $ D (J, \mathbf R ^ {n} ) $ of functions depending on $ t $ that are absolutely continuous on $ J $ and that assume values in $ \mathbf R ^ {n} $:
$$ \tag{2 } x ( \cdot ) \in D. $$
It is assumed that $ f (t, x) $ is a function defined on $ J \times \mathbf R ^ {n} $ with values in $ \mathbf R ^ {n} $ and satisfying the Carathéodory conditions; $ J $ is an interval on the real line $ \mathbf R $.
1) The boundary value problem (1), (2) is said to be linear if
$$ f (t, x) \equiv \ A (t) x + b (t), $$
where the functions $ A (t) $ and $ b (t) $ are summable on every compact interval in $ J $ and the set $ D $ is a linear manifold in $ D (J, \mathbf R ^ {n} ) $. In particular, one might have
$$ J = \ [t _ {0} , t _ {1} ], $$
$$ D = \left \{ x ( \cdot ) \in D (J, \mathbf R ^ {n} ): \int\limits _ { t _ {0} } ^ { {t _ 1 } } [d \Phi (t)] x (t) = 0 \right \} , $$
where $ \Phi (t) $ is a function of bounded variation. A linear boundary value problem gives rise to a linear operator
$$ Lx (t) \equiv \ x ^ \prime - A (t) x,\ \ x ( \cdot ) \in D, $$
the eigen values of which are precisely those values of the parameter $ \lambda $ for which the homogeneous boundary value problem
$$ x ^ \prime - A (t) x = \lambda x,\ \ x ( \cdot ) \in D, $$
has non-trivial solutions. These non-trivial solutions are the eigen functions of the operator $ L $. If the inverse operator $ L ^ {-1} $ exists and has an integral representation
$$ x (t) = \ L ^ {-1} b (t) \equiv \ \int\limits _ { J } G (t, s) b (s) ds,\ \ t \in J, $$
then $ G (t, s) $ is called a Green function.
2) Let $ J = (- \infty , \infty ) $, let $ f (t, x) $ be almost-periodic in $ t $ uniformly in $ x $ on every compact subset of $ \mathbf R ^ {n} $ and let $ D $ be the set of almost-periodic functions in $ t $ that are absolutely continuous on $ J $. Then problem (1), (2) is known as the problem of almost-periodic solutions.
3) In control theory one considers boundary value problems with a functional parameter: a control. For example, consider the equation
$$ \tag{3 } \frac{dx }{dt } = \ f (t, x, u),\ \ t \in J = [t _ {0} , t _ {1} ],\ \ x \in \mathbf R ^ {n} , $$
with set of admissible controls $ U $ and two sets $ M _ {0} , M _ {1} \subset \mathbf R ^ {n} $. Let $ D $ be the set of absolutely continuous functions in $ t $ such that $ x (t _ {0} ) \in M _ {0} $, $ x (t _ {1} ) \in M _ {1} $. The boundary value problem is to find a pair $ (x _ {0} ( \cdot ), u _ {0} ( \cdot )) $ such that $ u _ {0} ( \cdot ) \in U $ and the solution $ x _ {0} (t) $ of equation (3) at $ u = u _ {0} (t) $ satisfies the condition $ x _ {0} ( \cdot ) \in D $.
4) There is a wide range of diverse necessary and sufficient conditions for the existence and uniqueness of solutions to various boundary value problems, and of methods for constructing an approximate solution (see [4]–[7]). For example, consider the problem
$$ \tag{4 } \left . \begin{array}{c} x ^ \prime = A (t) x + f (t, x), \\ \int\limits _ { t _ {0} } ^ { {t _ 1 } } [d \Phi (t)] x (t) = 0, \end{array} \ \right \} $$
in which
$$ \| f (t, x) \| \leq a + b \ \| x \| ^ \alpha $$
for certain constants $ a > 0, b > 0, \alpha \geq 0 $. Suppose that the homogeneous problem
$$ \tag{5 } x ^ \prime = A (t) x,\ \ \int\limits _ { t _ {0} } ^ { {t _ 1 } } [d \Phi (t)] x (t) = 0 $$
is regular, i.e. its only solution is the trivial one. Then problem (4) has at least one solution, provided either $ \alpha < 1 $, or $ \alpha \geq 1 $ and $ b $ is sufficiently small. It is fairly complicated to determine whether problem (5) is regular. However, the linear (scalar) boundary value problem
$$ x ^ {\prime\prime} + q (t) x ^ \prime + p (t) x = 0,\ \ x (t _ {0} ) = 0,\ \ x (t _ {1} ) = 0, $$
for example, is regular if whenever $ | q (t) | \leq 2m $ there exists a $ k \in \mathbf R $ such that
$$ \int\limits _ { t _ {0} } ^ { {t _ 1 } } [p (t) - k] _ {+} dt < \ 2 [F (k, m) - m], $$
where
$$ F (k, m) = \ \left \{ \begin{array}{l} \sqrt {k - m ^ {2} } \mathop{\rm cotg} \ { \frac{(t _ {1} - t _ {0} ) \sqrt {k - m ^ {2} } }{2} } , \\ \ \ m ^ {2} < k \leq m ^ {2} + \frac{\pi ^ {2} }{(t _ {1} - t _ {0} ) ^ {2} } , \\ \frac{2}{t _ {1} - t _ {0} } ,\ \ k = m ^ {2} , \\ \sqrt {m ^ {2} - k } \ \mathop{\rm cotg} \ { \frac{(t _ {1} - t _ {0} ) \sqrt {m ^ {2} - k } }{2} } ,\ \ k < m ^ {2} . \\ \end{array} \right .$$
References
[1] | P. Hartman, "Ordinary differential equations" , Birkhäuser (1982) |
[2] | M.A. Krasnosel'skii, V.Sh. Burd, Yu.S. Kolesov, "Nonlinear almost-periodic oscillations" , Wiley (1973) (Translated from Russian) |
[3] | L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, "The mathematical theory of optimal processes" , Interscience (1962) (Translated from Russian) |
[4] | N.N. Krasovskii, "Theory of control of motion. Linear systems" , Moscow (1968) (In Russian) |
[5] | V.I. Zubov, "Lectures in control theory" , Moscow (1975) (In Russian) |
[6] | E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 1. Gewöhnliche Differentialgleichungen , Chelsea, reprint (1971) |
[7] | I.T. Kiguradze, "Some singular boundary value problems for ordinary differential equations" , Tbilisi (1975) (In Russian) |
Comments
References
[a1] | M. Braun, "Differential equations and their applications" , Springer (1975) |
[a2] | E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) pp. §§3.6, 3.51, 4.7, A.5 |
[a3] | L.K. Jackson, "Boundary value problems for ordinary differential equations" J.K. Hale (ed.) , Studies in ordinary differential equations , Math. Assoc. Amer. (1977) pp. 93–127 |
Boundary value problem, ordinary differential equations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boundary_value_problem,_ordinary_differential_equations&oldid=17771