Namespaces
Variants
Actions

Difference between revisions of "Quasi-linearization"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A collection of methods for the numerical solution of non-linear problems by reducing them to a sequence of linear problems. Lying at the basis of the apparatus of quasi-linearization is the [[Newton method|Newton method]] and its generalization to function spaces, the theory of differential inequalities (cf. [[Differential inequality|Differential inequality]]) and the method of [[Dynamic programming|dynamic programming]]. The simplest example illustrating a method of quasi-linearization is the use of the Newton–Raphson method for finding the root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q0765901.png" /> of a scalar monotone-decreasing strictly-convex function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q0765902.png" />. In case the original non-linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q0765903.png" /> is approximated at each stage of the iteration process by a linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q0765904.png" />, the root of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q0765905.png" /> is found, which serves as the next approximation, so that
+
<!--
 +
q0765901.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/Q076/Q.0706590 Quasi\AAhlinearization
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q0765906.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Under fairly general conditions the sequence so constructed has the property of monotonicity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q0765907.png" /> and quadratic convergence:
+
A collection of methods for the numerical solution of non-linear problems by reducing them to a sequence of linear problems. Lying at the basis of the apparatus of quasi-linearization is the [[Newton method|Newton method]] and its generalization to function spaces, the theory of differential inequalities (cf. [[Differential inequality|Differential inequality]]) and the method of [[Dynamic programming|dynamic programming]]. The simplest example illustrating a method of quasi-linearization is the use of the Newton–Raphson method for finding the root  $  r $
 +
of a scalar monotone-decreasing strictly-convex function  $  f $.  
 +
In case the original non-linear function  $  f $
 +
is approximated at each stage of the iteration process by a linear function  $  \phi $,
 +
the root of  $  \phi $
 +
is found, which serves as the next approximation, so that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q0765908.png" /></td> </tr></table>
+
$$
 +
x _ {n+} 1  = x _ {n} -  
 +
\frac{f ( x _ {n} ) }{f ^ { \prime } ( x _ {n} ) }
 +
,\ \
 +
n = 0 , 1 ,\dots .
 +
$$
 +
 
 +
Under fairly general conditions the sequence so constructed has the property of monotonicity  $  ( x _ {0} < x _ {1} < \dots < r ) $
 +
and quadratic convergence:
 +
 
 +
$$
 +
| x _ {n+} 1 - r |  \leq  k  | x _ {n} - r |  ^ {2} .
 +
$$
  
 
The application of quasi-linearization to solving the [[Riccati equation|Riccati equation]]
 
The application of quasi-linearization to solving the [[Riccati equation|Riccati equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q0765909.png" /></td> </tr></table>
+
$$
 +
v  ^  \prime  + v  ^ {2} + p ( t) v + q ( t)  = 0 ,\ \
 +
v ( 0= c
 +
$$
  
(it is assumed that a solution exists on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659010.png" />), is as follows. The original equation is replaced by the equivalent equation
+
(it is assumed that a solution exists on an interval $  [ 0 , t _ {0} ] $),  
 +
is as follows. The original equation is replaced by the equivalent equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659011.png" /></td> </tr></table>
+
$$
 +
v  ^  \prime  = \min _ { u } [ u  ^ {2} - 2 u v - p ( t) v - q ( t) ] ,
 +
$$
  
where the minimum is taken over all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659012.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659013.png" />. This equation has a number of properties inherent to linear equations, and in order to solve it one uses the linear differential equation
+
where the minimum is taken over all functions $  u $
 +
defined on $  [ 0 , t _ {0} ] $.  
 +
This equation has a number of properties inherent to linear equations, and in order to solve it one uses the linear differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659014.png" /></td> </tr></table>
+
$$
 +
w  ^  \prime  = u  ^ {2} - 2 u w - p ( t) w - q ( t) ,\ \
 +
w ( 0= c ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659015.png" /> is a fixed function. By appealing to the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659016.png" /> (equality holding when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659017.png" />), one can construct a system of successive approximations
+
where $  u $
 +
is a fixed function. By appealing to the property $  v ( t) \leq  w ( t) $(
 +
equality holding when $  u ( t) = v ( t) $),  
 +
one can construct a system of successive approximations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659018.png" /></td> </tr></table>
+
$$
 +
v _ {1}  \geq  v _ {2}  \geq  \dots
 +
$$
  
 
satisfying the linear equations
 
satisfying the linear equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659019.png" /></td> </tr></table>
+
$$
 +
v _ {n+} 1  ^  \prime  = v _ {n}  ^ {2} - 2 v _ {n} v _ {n+} 1 - p ( t)
 +
v _ {n+} 1 - q ( t) ,\ \
 +
v _ {n+} 1 ( 0= c .
 +
$$
  
 
The same recurrence relation can be obtained by applying the Newton–Kantorovich method (cf. [[Kantorovich process|Kantorovich process]]) to the original non-linear equation.
 
The same recurrence relation can be obtained by applying the Newton–Kantorovich method (cf. [[Kantorovich process|Kantorovich process]]) to the original non-linear equation.
Line 31: Line 76:
 
The employment of a quasi-linearization scheme in the solution of boundary value problems for the non-linear second-order differential equation
 
The employment of a quasi-linearization scheme in the solution of boundary value problems for the non-linear second-order differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659020.png" /></td> </tr></table>
+
$$
 +
u  ^ {\prime\prime}  = f ( u  ^  \prime  , u , t ) ,\ \
 +
t _ {1} \leq  t \leq  t _ {2} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659021.png" /></td> </tr></table>
+
$$
 +
g _ {1} ( u ( t _ {1} ) , u  ^  \prime  ( t _ {1} ) )  = 0 ,\ \
 +
g _ {2} ( u ( t _ {2} ) , u  ^  \prime  ( t _ {2} ) )  = 0,
 +
$$
  
leads to a sequence of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659022.png" /> satisfying the linear equations
+
leads to a sequence of functions $  \{ u _ {n} \} $
 +
satisfying the linear equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659023.png" /></td> </tr></table>
+
$$
 +
u _ {n+} 1  ^ {\prime\prime}  = f ( u _ {n}  ^  \prime  , u _ {n} , t ) +
 +
f _ {u  ^  \prime  } ( u _ {n}  ^  \prime  , u _ {n} , t )
 +
( u _ {n+} 1  ^  \prime  - u _ {n}  ^  \prime  ) +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659024.png" /></td> </tr></table>
+
$$
 +
+
 +
f _ {n} ( u _ {n}  ^  \prime  , u _ {n} , t ) ( u _ {n+} 1 - u _ {n} ) ,
 +
$$
  
 
with the linearized boundary conditions
 
with the linearized boundary conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659025.png" /></td> </tr></table>
+
$$
 +
g _ {i} ( u _ {n} ( t _ {i} ) ,\
 +
u _ {n}  ^  \prime  ( t _ {i} ) ) + g _ {iu} ( u _ {n} ( t _ {i} ) , u _ {n}  ^  \prime  ( t _ {i} ) )
 +
( u _ {n+} 1 ( t _ {i} ) - u _ {n} ( t _ {i} ) ) +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659026.png" /></td> </tr></table>
+
$$
 +
+
 +
g _ {i u  ^  \prime  } ( u _ {n} ( t _ {i} ) , u _ {n}  ^  \prime
 +
( t _ {i} ) ) ( u _ {n+} 1  ^  \prime  ( t _ {i} ) - u _ {n}  ^  \prime  ( t _ {i} ) )  = 0 .
 +
$$
  
The existence, uniqueness and quadratic convergence of the sequence follows from the corresponding convexity of the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659027.png" /> over a sufficiently small interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076590/q07659028.png" />.
+
The existence, uniqueness and quadratic convergence of the sequence follows from the corresponding convexity of the functions $  f , g _ {1} , g _ {2} $
 +
over a sufficiently small interval $  [ t _ {1} , t _ {2} ] $.
  
 
The method of quasi-linearization finds application in the solution of two-point and multi-point boundary value problems for linear and non-linear ordinary differential equations, boundary value problems for elliptic and parabolic partial differential equations, variational problems, differential-difference and functional-differential equations, etc. As with every iteration scheme, the method of quasi-linearization is suitable for computer implementation and has various modifications enabling one to accelerate the convergence for narrower classes of problems. There exists a variety of examples of its use as a heuristic method for solving a number of problems in physics, technology and economy.
 
The method of quasi-linearization finds application in the solution of two-point and multi-point boundary value problems for linear and non-linear ordinary differential equations, boundary value problems for elliptic and parabolic partial differential equations, variational problems, differential-difference and functional-differential equations, etc. As with every iteration scheme, the method of quasi-linearization is suitable for computer implementation and has various modifications enabling one to accelerate the convergence for narrower classes of problems. There exists a variety of examples of its use as a heuristic method for solving a number of problems in physics, technology and economy.
Line 53: Line 121:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.E. Bellman,  R.E. Kalaba,  "Quasilinearization and nonlinear boundary-value problems" , Elsevier  (1965)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.E. Bellman,  R.E. Kalaba,  "Quasilinearization and nonlinear boundary-value problems" , Elsevier  (1965)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Bellman,  G. Adomian,  "Partial differential equations" , Reidel  (1985)  pp. Chapt. IV</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Bellman,  R. Vasudevan,  "Wave propagation. An invariant imbedding approach" , Reidel  (1986)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Bellman,  G. Adomian,  "Partial differential equations" , Reidel  (1985)  pp. Chapt. IV</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Bellman,  R. Vasudevan,  "Wave propagation. An invariant imbedding approach" , Reidel  (1986)</TD></TR></table>

Latest revision as of 08:09, 6 June 2020


A collection of methods for the numerical solution of non-linear problems by reducing them to a sequence of linear problems. Lying at the basis of the apparatus of quasi-linearization is the Newton method and its generalization to function spaces, the theory of differential inequalities (cf. Differential inequality) and the method of dynamic programming. The simplest example illustrating a method of quasi-linearization is the use of the Newton–Raphson method for finding the root $ r $ of a scalar monotone-decreasing strictly-convex function $ f $. In case the original non-linear function $ f $ is approximated at each stage of the iteration process by a linear function $ \phi $, the root of $ \phi $ is found, which serves as the next approximation, so that

$$ x _ {n+} 1 = x _ {n} - \frac{f ( x _ {n} ) }{f ^ { \prime } ( x _ {n} ) } ,\ \ n = 0 , 1 ,\dots . $$

Under fairly general conditions the sequence so constructed has the property of monotonicity $ ( x _ {0} < x _ {1} < \dots < r ) $ and quadratic convergence:

$$ | x _ {n+} 1 - r | \leq k | x _ {n} - r | ^ {2} . $$

The application of quasi-linearization to solving the Riccati equation

$$ v ^ \prime + v ^ {2} + p ( t) v + q ( t) = 0 ,\ \ v ( 0) = c $$

(it is assumed that a solution exists on an interval $ [ 0 , t _ {0} ] $), is as follows. The original equation is replaced by the equivalent equation

$$ v ^ \prime = \min _ { u } [ u ^ {2} - 2 u v - p ( t) v - q ( t) ] , $$

where the minimum is taken over all functions $ u $ defined on $ [ 0 , t _ {0} ] $. This equation has a number of properties inherent to linear equations, and in order to solve it one uses the linear differential equation

$$ w ^ \prime = u ^ {2} - 2 u w - p ( t) w - q ( t) ,\ \ w ( 0) = c , $$

where $ u $ is a fixed function. By appealing to the property $ v ( t) \leq w ( t) $( equality holding when $ u ( t) = v ( t) $), one can construct a system of successive approximations

$$ v _ {1} \geq v _ {2} \geq \dots $$

satisfying the linear equations

$$ v _ {n+} 1 ^ \prime = v _ {n} ^ {2} - 2 v _ {n} v _ {n+} 1 - p ( t) v _ {n+} 1 - q ( t) ,\ \ v _ {n+} 1 ( 0) = c . $$

The same recurrence relation can be obtained by applying the Newton–Kantorovich method (cf. Kantorovich process) to the original non-linear equation.

The employment of a quasi-linearization scheme in the solution of boundary value problems for the non-linear second-order differential equation

$$ u ^ {\prime\prime} = f ( u ^ \prime , u , t ) ,\ \ t _ {1} \leq t \leq t _ {2} , $$

$$ g _ {1} ( u ( t _ {1} ) , u ^ \prime ( t _ {1} ) ) = 0 ,\ \ g _ {2} ( u ( t _ {2} ) , u ^ \prime ( t _ {2} ) ) = 0, $$

leads to a sequence of functions $ \{ u _ {n} \} $ satisfying the linear equations

$$ u _ {n+} 1 ^ {\prime\prime} = f ( u _ {n} ^ \prime , u _ {n} , t ) + f _ {u ^ \prime } ( u _ {n} ^ \prime , u _ {n} , t ) ( u _ {n+} 1 ^ \prime - u _ {n} ^ \prime ) + $$

$$ + f _ {n} ( u _ {n} ^ \prime , u _ {n} , t ) ( u _ {n+} 1 - u _ {n} ) , $$

with the linearized boundary conditions

$$ g _ {i} ( u _ {n} ( t _ {i} ) ,\ u _ {n} ^ \prime ( t _ {i} ) ) + g _ {iu} ( u _ {n} ( t _ {i} ) , u _ {n} ^ \prime ( t _ {i} ) ) ( u _ {n+} 1 ( t _ {i} ) - u _ {n} ( t _ {i} ) ) + $$

$$ + g _ {i u ^ \prime } ( u _ {n} ( t _ {i} ) , u _ {n} ^ \prime ( t _ {i} ) ) ( u _ {n+} 1 ^ \prime ( t _ {i} ) - u _ {n} ^ \prime ( t _ {i} ) ) = 0 . $$

The existence, uniqueness and quadratic convergence of the sequence follows from the corresponding convexity of the functions $ f , g _ {1} , g _ {2} $ over a sufficiently small interval $ [ t _ {1} , t _ {2} ] $.

The method of quasi-linearization finds application in the solution of two-point and multi-point boundary value problems for linear and non-linear ordinary differential equations, boundary value problems for elliptic and parabolic partial differential equations, variational problems, differential-difference and functional-differential equations, etc. As with every iteration scheme, the method of quasi-linearization is suitable for computer implementation and has various modifications enabling one to accelerate the convergence for narrower classes of problems. There exists a variety of examples of its use as a heuristic method for solving a number of problems in physics, technology and economy.

References

[1] R.E. Bellman, R.E. Kalaba, "Quasilinearization and nonlinear boundary-value problems" , Elsevier (1965) (Translated from Russian)

Comments

References

[a1] R. Bellman, G. Adomian, "Partial differential equations" , Reidel (1985) pp. Chapt. IV
[a2] R. Bellman, R. Vasudevan, "Wave propagation. An invariant imbedding approach" , Reidel (1986)
How to Cite This Entry:
Quasi-linearization. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-linearization&oldid=17538
This article was adapted from an original article by I.A. Vatel'F.I. Ereshko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article