Namespaces
Variants
Actions

Difference between revisions of "Integral extension of a ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514501.png" /> of a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514502.png" /> with unit element such that every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514503.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514504.png" />, that is, satisfies an equation of the form
+
<!--
 +
i0514501.png
 +
$#A+1 = 73 n = 0
 +
$#C+1 = 73 : ~/encyclopedia/old_files/data/I051/I.0501450 Integral extension of a ring
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514505.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514506.png" />, a so-called equation of integral dependence.
+
An extension  $  B $
 +
of a commutative ring  $  A $
 +
with unit element such that every element  $  x \in B $
 +
is integral over  $  A $,
 +
that is, satisfies an equation of the form
  
An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514507.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514508.png" /> if and only if one of the following two equivalent conditions is satisfied: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514509.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145010.png" />-module of finite type; or 2) there exists a faithful <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145011.png" />-module that is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145012.png" />-module of finite type. An integral element is algebraic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145014.png" /> is a field, the converse assertion holds. Elements of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145015.png" /> of complex numbers that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145016.png" /> are called algebraic integers. If a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145017.png" /> is a module of finite type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145018.png" />, then every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145019.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145020.png" /> (the converse need not be true).
+
$$
 +
x  ^ {n} + a _ {n - 1 }  x ^ {n - 1 } + \dots + a _ {0= 0,
 +
$$
  
Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145021.png" /> is a commutative ring, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145023.png" /> be elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145024.png" /> that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145025.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145027.png" /> are also integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145028.png" />, and the set of all elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145029.png" /> that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145030.png" /> forms a subring, called the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145031.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145032.png" />. All rings considered below are assumed to be commutative.
+
where  $  a _ {i} \in A $,  
 +
a so-called equation of integral dependence.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145033.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145035.png" /> is some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145036.png" />-algebra, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145037.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145039.png" /> is an integral extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145041.png" /> is some multiplicative subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145042.png" />, then the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145043.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145044.png" />. An integral domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145045.png" /> is said to be integrally closed if the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145046.png" /> in its field of fractions is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145047.png" />. A [[Factorial ring|factorial ring]] is integrally closed. A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145048.png" /> is integrally closed if and only if for every maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145049.png" /> the local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145050.png" /> is integrally closed.
+
An element  $  x $
 +
is integral over $  A $
 +
if and only if one of the following two equivalent conditions is satisfied: 1)  $  A [ x] $
 +
is an $  A $-
 +
module of finite type; or 2) there exists a faithful  $  A [ x] $-
 +
module that is an  $  A $-
 +
module of finite type. An integral element is algebraic over $  A $.  
 +
If  $  A $
 +
is a field, the converse assertion holds. Elements of the field $  \mathbf C $
 +
of complex numbers that are integral over  $  \mathbf Z $
 +
are called algebraic integers. If a ring $  B $
 +
is a module of finite type over  $  A $,
 +
then every element  $  x \in B $
 +
is integral over  $  A $(
 +
the converse need not be true).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145051.png" /> be an integral extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145052.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145053.png" /> be a [[Prime ideal|prime ideal]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145054.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145055.png" /> and there exists a prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145057.png" /> that lies above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145058.png" /> (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145059.png" /> is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145060.png" />). The ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145061.png" /> is maximal if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145062.png" /> is maximal. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145063.png" /> is a finite extension of the field of fractions of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145065.png" /> is the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145066.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145067.png" />, then there are only finitely-many prime ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145068.png" /> that lie above a given prime ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145069.png" />.
+
Suppose that  $  R \supset A $
 +
is a commutative ring, and let $  x $
 +
and  $  y $
 +
be elements of $  R $
 +
that are integral over  $  A $.  
 +
Then $  x + y $
 +
and $  xy $
 +
are also integral over  $  A $,  
 +
and the set of all elements of $  R $
 +
that are integral over  $  A $
 +
forms a subring, called the integral closure of $  A $
 +
in $  R $.  
 +
All rings considered below are assumed to be commutative.
  
Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145070.png" />; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145071.png" /> is an integral extension if and only if both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145073.png" /> are integral extensions.
+
If  $  B $
 +
is integral over  $  A $
 +
and  $  A  ^  \prime  $
 +
is some  $  A $-
 +
algebra, then  $  B \otimes A  ^  \prime  $
 +
is integral over  $  A  ^  \prime  $.
 +
If  $  B $
 +
is an integral extension of  $  A $
 +
and  $  S $
 +
is some multiplicative subset of  $  A $,
 +
then the ring  $  S  ^ {-} 1 B $
 +
is integral over  $  S  ^ {-} 1 A $.
 +
An integral domain  $  A $
 +
is said to be integrally closed if the integral closure of  $  A $
 +
in its field of fractions is  $  A $.
 +
A [[Factorial ring|factorial ring]] is integrally closed. A ring  $  A $
 +
is integrally closed if and only if for every maximal ideal  $  \mathfrak p \subset  A $
 +
the local ring  $  A _ {\mathfrak p }  $
 +
is integrally closed.
 +
 
 +
Let  $  B $
 +
be an integral extension of  $  A $
 +
and let  $  \mathfrak p $
 +
be a [[Prime ideal|prime ideal]] of  $  A $.
 +
Then  $  \mathfrak p B \neq B $
 +
and there exists a prime ideal  $  \mathfrak P $
 +
of  $  B $
 +
that lies above  $  \mathfrak p $(
 +
that is,  $  \mathfrak P $
 +
is such that $  \mathfrak p = \mathfrak P \cap A $).  
 +
The ideal  $  \mathfrak P $
 +
is maximal if and only if  $  \mathfrak p $
 +
is maximal. If  $  L $
 +
is a finite extension of the field of fractions of a ring  $  A $
 +
and  $  B $
 +
is the integral closure of  $  A $
 +
in  $  L $,
 +
then there are only finitely-many prime ideals of  $  B $
 +
that lie above a given prime ideal of  $  A $.
 +
 
 +
Suppose that  $  C \supset B \supset A $;  
 +
then $  C \supset A $
 +
is an integral extension if and only if both $  C \supset B $
 +
and $  B \supset A $
 +
are integral extensions.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lang,  "Algebra" , Addison-Wesley  (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lang,  "Algebra" , Addison-Wesley  (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR></table>

Latest revision as of 22:12, 5 June 2020


An extension $ B $ of a commutative ring $ A $ with unit element such that every element $ x \in B $ is integral over $ A $, that is, satisfies an equation of the form

$$ x ^ {n} + a _ {n - 1 } x ^ {n - 1 } + \dots + a _ {0} = 0, $$

where $ a _ {i} \in A $, a so-called equation of integral dependence.

An element $ x $ is integral over $ A $ if and only if one of the following two equivalent conditions is satisfied: 1) $ A [ x] $ is an $ A $- module of finite type; or 2) there exists a faithful $ A [ x] $- module that is an $ A $- module of finite type. An integral element is algebraic over $ A $. If $ A $ is a field, the converse assertion holds. Elements of the field $ \mathbf C $ of complex numbers that are integral over $ \mathbf Z $ are called algebraic integers. If a ring $ B $ is a module of finite type over $ A $, then every element $ x \in B $ is integral over $ A $( the converse need not be true).

Suppose that $ R \supset A $ is a commutative ring, and let $ x $ and $ y $ be elements of $ R $ that are integral over $ A $. Then $ x + y $ and $ xy $ are also integral over $ A $, and the set of all elements of $ R $ that are integral over $ A $ forms a subring, called the integral closure of $ A $ in $ R $. All rings considered below are assumed to be commutative.

If $ B $ is integral over $ A $ and $ A ^ \prime $ is some $ A $- algebra, then $ B \otimes A ^ \prime $ is integral over $ A ^ \prime $. If $ B $ is an integral extension of $ A $ and $ S $ is some multiplicative subset of $ A $, then the ring $ S ^ {-} 1 B $ is integral over $ S ^ {-} 1 A $. An integral domain $ A $ is said to be integrally closed if the integral closure of $ A $ in its field of fractions is $ A $. A factorial ring is integrally closed. A ring $ A $ is integrally closed if and only if for every maximal ideal $ \mathfrak p \subset A $ the local ring $ A _ {\mathfrak p } $ is integrally closed.

Let $ B $ be an integral extension of $ A $ and let $ \mathfrak p $ be a prime ideal of $ A $. Then $ \mathfrak p B \neq B $ and there exists a prime ideal $ \mathfrak P $ of $ B $ that lies above $ \mathfrak p $( that is, $ \mathfrak P $ is such that $ \mathfrak p = \mathfrak P \cap A $). The ideal $ \mathfrak P $ is maximal if and only if $ \mathfrak p $ is maximal. If $ L $ is a finite extension of the field of fractions of a ring $ A $ and $ B $ is the integral closure of $ A $ in $ L $, then there are only finitely-many prime ideals of $ B $ that lie above a given prime ideal of $ A $.

Suppose that $ C \supset B \supset A $; then $ C \supset A $ is an integral extension if and only if both $ C \supset B $ and $ B \supset A $ are integral extensions.

References

[1] S. Lang, "Algebra" , Addison-Wesley (1974)
[2] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
How to Cite This Entry:
Integral extension of a ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_extension_of_a_ring&oldid=17415
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article