|
|
Line 1: |
Line 1: |
− | An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514501.png" /> of a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514502.png" /> with unit element such that every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514503.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514504.png" />, that is, satisfies an equation of the form
| + | <!-- |
| + | i0514501.png |
| + | $#A+1 = 73 n = 0 |
| + | $#C+1 = 73 : ~/encyclopedia/old_files/data/I051/I.0501450 Integral extension of a ring |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514505.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514506.png" />, a so-called equation of integral dependence.
| + | An extension $ B $ |
| + | of a commutative ring $ A $ |
| + | with unit element such that every element $ x \in B $ |
| + | is integral over $ A $, |
| + | that is, satisfies an equation of the form |
| | | |
− | An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514507.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514508.png" /> if and only if one of the following two equivalent conditions is satisfied: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514509.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145010.png" />-module of finite type; or 2) there exists a faithful <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145011.png" />-module that is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145012.png" />-module of finite type. An integral element is algebraic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145014.png" /> is a field, the converse assertion holds. Elements of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145015.png" /> of complex numbers that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145016.png" /> are called algebraic integers. If a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145017.png" /> is a module of finite type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145018.png" />, then every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145019.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145020.png" /> (the converse need not be true).
| + | $$ |
| + | x ^ {n} + a _ {n - 1 } x ^ {n - 1 } + \dots + a _ {0} = 0, |
| + | $$ |
| | | |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145021.png" /> is a commutative ring, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145023.png" /> be elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145024.png" /> that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145025.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145027.png" /> are also integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145028.png" />, and the set of all elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145029.png" /> that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145030.png" /> forms a subring, called the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145031.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145032.png" />. All rings considered below are assumed to be commutative.
| + | where $ a _ {i} \in A $, |
| + | a so-called equation of integral dependence. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145033.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145035.png" /> is some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145036.png" />-algebra, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145037.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145039.png" /> is an integral extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145041.png" /> is some multiplicative subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145042.png" />, then the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145043.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145044.png" />. An integral domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145045.png" /> is said to be integrally closed if the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145046.png" /> in its field of fractions is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145047.png" />. A [[Factorial ring|factorial ring]] is integrally closed. A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145048.png" /> is integrally closed if and only if for every maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145049.png" /> the local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145050.png" /> is integrally closed.
| + | An element $ x $ |
| + | is integral over $ A $ |
| + | if and only if one of the following two equivalent conditions is satisfied: 1) $ A [ x] $ |
| + | is an $ A $- |
| + | module of finite type; or 2) there exists a faithful $ A [ x] $- |
| + | module that is an $ A $- |
| + | module of finite type. An integral element is algebraic over $ A $. |
| + | If $ A $ |
| + | is a field, the converse assertion holds. Elements of the field $ \mathbf C $ |
| + | of complex numbers that are integral over $ \mathbf Z $ |
| + | are called algebraic integers. If a ring $ B $ |
| + | is a module of finite type over $ A $, |
| + | then every element $ x \in B $ |
| + | is integral over $ A $( |
| + | the converse need not be true). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145051.png" /> be an integral extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145052.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145053.png" /> be a [[Prime ideal|prime ideal]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145054.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145055.png" /> and there exists a prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145057.png" /> that lies above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145058.png" /> (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145059.png" /> is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145060.png" />). The ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145061.png" /> is maximal if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145062.png" /> is maximal. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145063.png" /> is a finite extension of the field of fractions of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145065.png" /> is the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145066.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145067.png" />, then there are only finitely-many prime ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145068.png" /> that lie above a given prime ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145069.png" />.
| + | Suppose that $ R \supset A $ |
| + | is a commutative ring, and let $ x $ |
| + | and $ y $ |
| + | be elements of $ R $ |
| + | that are integral over $ A $. |
| + | Then $ x + y $ |
| + | and $ xy $ |
| + | are also integral over $ A $, |
| + | and the set of all elements of $ R $ |
| + | that are integral over $ A $ |
| + | forms a subring, called the integral closure of $ A $ |
| + | in $ R $. |
| + | All rings considered below are assumed to be commutative. |
| | | |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145070.png" />; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145071.png" /> is an integral extension if and only if both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145073.png" /> are integral extensions.
| + | If $ B $ |
| + | is integral over $ A $ |
| + | and $ A ^ \prime $ |
| + | is some $ A $- |
| + | algebra, then $ B \otimes A ^ \prime $ |
| + | is integral over $ A ^ \prime $. |
| + | If $ B $ |
| + | is an integral extension of $ A $ |
| + | and $ S $ |
| + | is some multiplicative subset of $ A $, |
| + | then the ring $ S ^ {-} 1 B $ |
| + | is integral over $ S ^ {-} 1 A $. |
| + | An integral domain $ A $ |
| + | is said to be integrally closed if the integral closure of $ A $ |
| + | in its field of fractions is $ A $. |
| + | A [[Factorial ring|factorial ring]] is integrally closed. A ring $ A $ |
| + | is integrally closed if and only if for every maximal ideal $ \mathfrak p \subset A $ |
| + | the local ring $ A _ {\mathfrak p } $ |
| + | is integrally closed. |
| + | |
| + | Let $ B $ |
| + | be an integral extension of $ A $ |
| + | and let $ \mathfrak p $ |
| + | be a [[Prime ideal|prime ideal]] of $ A $. |
| + | Then $ \mathfrak p B \neq B $ |
| + | and there exists a prime ideal $ \mathfrak P $ |
| + | of $ B $ |
| + | that lies above $ \mathfrak p $( |
| + | that is, $ \mathfrak P $ |
| + | is such that $ \mathfrak p = \mathfrak P \cap A $). |
| + | The ideal $ \mathfrak P $ |
| + | is maximal if and only if $ \mathfrak p $ |
| + | is maximal. If $ L $ |
| + | is a finite extension of the field of fractions of a ring $ A $ |
| + | and $ B $ |
| + | is the integral closure of $ A $ |
| + | in $ L $, |
| + | then there are only finitely-many prime ideals of $ B $ |
| + | that lie above a given prime ideal of $ A $. |
| + | |
| + | Suppose that $ C \supset B \supset A $; |
| + | then $ C \supset A $ |
| + | is an integral extension if and only if both $ C \supset B $ |
| + | and $ B \supset A $ |
| + | are integral extensions. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR></table> |
An extension $ B $
of a commutative ring $ A $
with unit element such that every element $ x \in B $
is integral over $ A $,
that is, satisfies an equation of the form
$$
x ^ {n} + a _ {n - 1 } x ^ {n - 1 } + \dots + a _ {0} = 0,
$$
where $ a _ {i} \in A $,
a so-called equation of integral dependence.
An element $ x $
is integral over $ A $
if and only if one of the following two equivalent conditions is satisfied: 1) $ A [ x] $
is an $ A $-
module of finite type; or 2) there exists a faithful $ A [ x] $-
module that is an $ A $-
module of finite type. An integral element is algebraic over $ A $.
If $ A $
is a field, the converse assertion holds. Elements of the field $ \mathbf C $
of complex numbers that are integral over $ \mathbf Z $
are called algebraic integers. If a ring $ B $
is a module of finite type over $ A $,
then every element $ x \in B $
is integral over $ A $(
the converse need not be true).
Suppose that $ R \supset A $
is a commutative ring, and let $ x $
and $ y $
be elements of $ R $
that are integral over $ A $.
Then $ x + y $
and $ xy $
are also integral over $ A $,
and the set of all elements of $ R $
that are integral over $ A $
forms a subring, called the integral closure of $ A $
in $ R $.
All rings considered below are assumed to be commutative.
If $ B $
is integral over $ A $
and $ A ^ \prime $
is some $ A $-
algebra, then $ B \otimes A ^ \prime $
is integral over $ A ^ \prime $.
If $ B $
is an integral extension of $ A $
and $ S $
is some multiplicative subset of $ A $,
then the ring $ S ^ {-} 1 B $
is integral over $ S ^ {-} 1 A $.
An integral domain $ A $
is said to be integrally closed if the integral closure of $ A $
in its field of fractions is $ A $.
A factorial ring is integrally closed. A ring $ A $
is integrally closed if and only if for every maximal ideal $ \mathfrak p \subset A $
the local ring $ A _ {\mathfrak p } $
is integrally closed.
Let $ B $
be an integral extension of $ A $
and let $ \mathfrak p $
be a prime ideal of $ A $.
Then $ \mathfrak p B \neq B $
and there exists a prime ideal $ \mathfrak P $
of $ B $
that lies above $ \mathfrak p $(
that is, $ \mathfrak P $
is such that $ \mathfrak p = \mathfrak P \cap A $).
The ideal $ \mathfrak P $
is maximal if and only if $ \mathfrak p $
is maximal. If $ L $
is a finite extension of the field of fractions of a ring $ A $
and $ B $
is the integral closure of $ A $
in $ L $,
then there are only finitely-many prime ideals of $ B $
that lie above a given prime ideal of $ A $.
Suppose that $ C \supset B \supset A $;
then $ C \supset A $
is an integral extension if and only if both $ C \supset B $
and $ B \supset A $
are integral extensions.
References
[1] | S. Lang, "Algebra" , Addison-Wesley (1974) |
[2] | N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French) |