Namespaces
Variants
Actions

Difference between revisions of "Kerr metric"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The solution of the Einstein equation describing the external gravity field of a rotating source with mass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553401.png" /> and angular momentum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553402.png" />. It is of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553403.png" /> according to the classification of A.Z. Petrov. The simplest description is as the Kerr–Schild metric:
+
<!--
 +
k0553401.png
 +
$#A+1 = 16 n = 0
 +
$#C+1 = 16 : ~/encyclopedia/old_files/data/K055/K.0505340 Kerr metric
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553404.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553405.png" /> is the null vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553406.png" />, tangent to the special principal null congruence with rotation (of non-gradient type), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553407.png" /> is the metric tensor of Minkowski space. The characteristic parameter of the Kerr metric is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553408.png" />. In the general case in the presence of a charge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553409.png" /> (a Kerr–Newman metric) the scalar function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k05534010.png" /> has the form
+
The solution of the Einstein equation describing the external gravity field of a rotating source with mass  $  m $
 +
and angular momentum  $  L $.  
 +
It is of type  $  D $
 +
according to the classification of A.Z. Petrov. The simplest description is as the Kerr–Schild metric:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k05534011.png" /></td> </tr></table>
+
$$
 +
g _ {\mu \nu }  = \eta _ {\mu \nu }  + 2 h K _  \mu  K _  \nu  ,
 +
$$
 +
 
 +
where  $  K _  \mu  $
 +
is the null vector  $  ( K _  \mu  K _  \nu  g ^ {\mu \nu } = 0 ) $,
 +
tangent to the special principal null congruence with rotation (of non-gradient type), and  $  \eta _ {\mu \nu }  $
 +
is the metric tensor of Minkowski space. The characteristic parameter of the Kerr metric is  $  a = L / m $.
 +
In the general case in the presence of a charge  $  e $(
 +
a Kerr–Newman metric) the scalar function  $  h $
 +
has the form
 +
 
 +
$$
 +
=
 +
\frac{m}{2}
 +
 
 +
( \rho  ^ {-} 1 + \overline{ {\rho  ^ {-} 1 }}\; ) -
 +
 
 +
\frac{e  ^ {2} }{2 \rho \overline \rho \; }
 +
,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k05534012.png" /></td> </tr></table>
+
$$
 +
\rho  ^ {2}  = x  ^ {2} + y  ^ {2} + ( z + i a )  ^ {2} .
 +
$$
  
The field is singular on the annular thread of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k05534013.png" /> (when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k05534014.png" />). For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k05534015.png" /> the singularity contracts to a point; when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k05534016.png" /> the Kerr metric becomes the [[Schwarzschild metric|Schwarzschild metric]].
+
The field is singular on the annular thread of radius $  a $(
 +
when $  \rho = 0 $).  
 +
For $  a = 0 $
 +
the singularity contracts to a point; when $  a = e = 0 $
 +
the Kerr metric becomes the [[Schwarzschild metric|Schwarzschild metric]].
  
 
The Kerr metric was obtained by R.P. Kerr [[#References|[1]]].
 
The Kerr metric was obtained by R.P. Kerr [[#References|[1]]].

Latest revision as of 22:14, 5 June 2020


The solution of the Einstein equation describing the external gravity field of a rotating source with mass $ m $ and angular momentum $ L $. It is of type $ D $ according to the classification of A.Z. Petrov. The simplest description is as the Kerr–Schild metric:

$$ g _ {\mu \nu } = \eta _ {\mu \nu } + 2 h K _ \mu K _ \nu , $$

where $ K _ \mu $ is the null vector $ ( K _ \mu K _ \nu g ^ {\mu \nu } = 0 ) $, tangent to the special principal null congruence with rotation (of non-gradient type), and $ \eta _ {\mu \nu } $ is the metric tensor of Minkowski space. The characteristic parameter of the Kerr metric is $ a = L / m $. In the general case in the presence of a charge $ e $( a Kerr–Newman metric) the scalar function $ h $ has the form

$$ h = \frac{m}{2} ( \rho ^ {-} 1 + \overline{ {\rho ^ {-} 1 }}\; ) - \frac{e ^ {2} }{2 \rho \overline \rho \; } , $$

where

$$ \rho ^ {2} = x ^ {2} + y ^ {2} + ( z + i a ) ^ {2} . $$

The field is singular on the annular thread of radius $ a $( when $ \rho = 0 $). For $ a = 0 $ the singularity contracts to a point; when $ a = e = 0 $ the Kerr metric becomes the Schwarzschild metric.

The Kerr metric was obtained by R.P. Kerr [1].

References

[1] R.P. Kerr, "Gravitational field of a spinning mass as an example of algebraically special matrices" Phys. Rev. Letters , 11 (1963) pp. 237–238
[2] C.W. Misner, K.S. Thorne, J.A. Wheeler, "Gravitation" , Freeman (1973)
[3] M. Rees, R. Ruffini, J. Wheeler, "Black holes, gravitational waves and cosmology" , Gordon & Breach (1974)
How to Cite This Entry:
Kerr metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kerr_metric&oldid=17370
This article was adapted from an original article by A.Ya. Burinskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article