Namespaces
Variants
Actions

Difference between revisions of "Lefschetz number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
An invariant of a mapping of a chain (cochain) complex or topological space into itself. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l0579901.png" /> be a chain complex of Abelian groups (respectively, a topological space), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l0579902.png" /> an endomorphism of degree 0 (respectively, a continuous mapping; cf. [[Degree of a mapping|Degree of a mapping]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l0579903.png" /> the [[Homology group|homology group]] of the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l0579904.png" /> with coefficients in the field of rational numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l0579905.png" />, where
+
<!--
 +
l0579901.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/L057/L.0507990 Lefschetz number
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l0579906.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l0579907.png" /> be the [[Trace|trace]] of the linear transformation
+
An invariant of a mapping of a chain (cochain) complex or topological space into itself. Let  $  X $
 +
be a chain complex of Abelian groups (respectively, a topological space),  $  f :  X \rightarrow X $
 +
an endomorphism of degree 0 (respectively, a continuous mapping; cf. [[Degree of a mapping|Degree of a mapping]]),  $  H _ {i} ( X , \mathbf Q ) $
 +
the [[Homology group|homology group]] of the object  $  X $
 +
with coefficients in the field of rational numbers  $  \mathbf Q $,
 +
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l0579908.png" /></td> </tr></table>
+
$$
 +
\sum _ { i }  \mathop{\rm dim} _ {\mathbf Q }  H _ {i} ( X , \mathbf Q )  < \infty ,
 +
$$
  
By definition, the Lefschetz number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l0579909.png" /> is
+
and let  $  t _ {i} $
 +
be the [[Trace|trace]] of the linear transformation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799010.png" /></td> </tr></table>
+
$$
 +
f _ {*} : H _ {i} ( X , \mathbf Q )  \rightarrow  H _ {i} ( X , \mathbf Q ) .
 +
$$
  
In the case of a cochain complex the definition is similar. In particular, the Lefschetz number of the identity mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799011.png" /> is equal to the [[Euler characteristic|Euler characteristic]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799012.png" /> of the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799014.png" /> is a chain (cochain) complex of free Abelian groups or a topological space, then the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799015.png" /> is always an integer. The Lefschetz number was introduced by S. Lefschetz [[#References|[1]]] for the solution of the problem on the number of fixed points of a continuous mapping (see [[Lefschetz formula|Lefschetz formula]]).
+
By definition, the Lefschetz number of $  f $
 +
is
  
To find the Lefschetz number of an endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799016.png" /> of a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799017.png" /> consisting of finite-dimensional vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799018.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799019.png" /> one can use the following formula (which is sometimes called the Hopf trace formula):
+
$$
 +
\Lambda ( f  )  = \sum _ { i= } 0 ^  \infty  (- 1)  ^ {i} t _ {i} .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799020.png" /></td> </tr></table>
+
In the case of a cochain complex the definition is similar. In particular, the Lefschetz number of the identity mapping  $  e _ {X} $
 +
is equal to the [[Euler characteristic|Euler characteristic]]  $  \chi ( X) $
 +
of the object  $  X $.  
 +
If  $  X $
 +
is a chain (cochain) complex of free Abelian groups or a topological space, then the number  $  \Lambda ( f  ) $
 +
is always an integer. The Lefschetz number was introduced by S. Lefschetz [[#References|[1]]] for the solution of the problem on the number of fixed points of a continuous mapping (see [[Lefschetz formula|Lefschetz formula]]).
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799021.png" /> is the trace of the linear transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799022.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799023.png" /> is a finite [[Cellular space|cellular space]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799024.png" /> is a continuous mapping of it into itself and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799025.png" /> is a cellular approximation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799026.png" />, then
+
To find the Lefschetz number of an endomorphism  $  f $
 +
of a complex  $  X $
 +
consisting of finite-dimensional vector spaces  $  X _ {i} $
 +
over  $  \mathbf Q $
 +
one can use the following formula (which is sometimes called the Hopf trace formula):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799027.png" /></td> </tr></table>
+
$$
 +
\Lambda ( f  )  = \sum _ { i= } 0 ^  \infty  (- 1)  ^ {i} T _ {i} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799028.png" /> is the trace of the transformation
+
where $  T _ {i} $
 +
is the trace of the linear transformation $  f :  X _ {i} \rightarrow X _ {i} $.
 +
In particular, if  $  X $
 +
is a finite [[Cellular space|cellular space]],  $  \phi :  X \rightarrow X $
 +
is a continuous mapping of it into itself and  $  \psi :  X \rightarrow X $
 +
is a cellular approximation of  $  \phi $,
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799029.png" /></td> </tr></table>
+
$$
 +
\Lambda ( \phi )  = \Lambda ( \psi )  = \sum _ { i= } 0 ^  \infty  (- 1)  ^ {i}
 +
T _ {i} ,
 +
$$
  
induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799031.png" /> is the group of rational <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799032.png" />-dimensional chains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057990/l05799033.png" />.
+
where  $  T _ {i} $
 +
is the trace of the transformation
 +
 
 +
$$
 +
\psi _ {\#} :  C _ {i} ( X , \mathbf Q )  \rightarrow  C _ {i} ( X , \mathbf Q )
 +
$$
 +
 
 +
induced by $  \psi $
 +
and $  C _ {i} ( X _ {i} , \mathbf Q ) $
 +
is the group of rational $  i $-
 +
dimensional chains of $  X $.
  
 
Everything stated above can be generalized to the case of an arbitrary coefficient field.
 
Everything stated above can be generalized to the case of an arbitrary coefficient field.
Line 31: Line 82:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lefschetz,  "Intersections and transformations of complexes and manifolds"  ''Trans. Amer. Math. Soc.'' , '''28'''  (1926)  pp. 1–49</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Seifert,  W. Threlfall,  "A textbook of topology" , Acad. Press  (1980)  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lefschetz,  "Intersections and transformations of complexes and manifolds"  ''Trans. Amer. Math. Soc.'' , '''28'''  (1926)  pp. 1–49</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Seifert,  W. Threlfall,  "A textbook of topology" , Acad. Press  (1980)  (Translated from German)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Dugundji,  A. Granas,  "Fixed point theory" , PWN  (1982)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Dugundji,  A. Granas,  "Fixed point theory" , PWN  (1982)</TD></TR></table>

Revision as of 22:16, 5 June 2020


An invariant of a mapping of a chain (cochain) complex or topological space into itself. Let $ X $ be a chain complex of Abelian groups (respectively, a topological space), $ f : X \rightarrow X $ an endomorphism of degree 0 (respectively, a continuous mapping; cf. Degree of a mapping), $ H _ {i} ( X , \mathbf Q ) $ the homology group of the object $ X $ with coefficients in the field of rational numbers $ \mathbf Q $, where

$$ \sum _ { i } \mathop{\rm dim} _ {\mathbf Q } H _ {i} ( X , \mathbf Q ) < \infty , $$

and let $ t _ {i} $ be the trace of the linear transformation

$$ f _ {*} : H _ {i} ( X , \mathbf Q ) \rightarrow H _ {i} ( X , \mathbf Q ) . $$

By definition, the Lefschetz number of $ f $ is

$$ \Lambda ( f ) = \sum _ { i= } 0 ^ \infty (- 1) ^ {i} t _ {i} . $$

In the case of a cochain complex the definition is similar. In particular, the Lefschetz number of the identity mapping $ e _ {X} $ is equal to the Euler characteristic $ \chi ( X) $ of the object $ X $. If $ X $ is a chain (cochain) complex of free Abelian groups or a topological space, then the number $ \Lambda ( f ) $ is always an integer. The Lefschetz number was introduced by S. Lefschetz [1] for the solution of the problem on the number of fixed points of a continuous mapping (see Lefschetz formula).

To find the Lefschetz number of an endomorphism $ f $ of a complex $ X $ consisting of finite-dimensional vector spaces $ X _ {i} $ over $ \mathbf Q $ one can use the following formula (which is sometimes called the Hopf trace formula):

$$ \Lambda ( f ) = \sum _ { i= } 0 ^ \infty (- 1) ^ {i} T _ {i} , $$

where $ T _ {i} $ is the trace of the linear transformation $ f : X _ {i} \rightarrow X _ {i} $. In particular, if $ X $ is a finite cellular space, $ \phi : X \rightarrow X $ is a continuous mapping of it into itself and $ \psi : X \rightarrow X $ is a cellular approximation of $ \phi $, then

$$ \Lambda ( \phi ) = \Lambda ( \psi ) = \sum _ { i= } 0 ^ \infty (- 1) ^ {i} T _ {i} , $$

where $ T _ {i} $ is the trace of the transformation

$$ \psi _ {\#} : C _ {i} ( X , \mathbf Q ) \rightarrow C _ {i} ( X , \mathbf Q ) $$

induced by $ \psi $ and $ C _ {i} ( X _ {i} , \mathbf Q ) $ is the group of rational $ i $- dimensional chains of $ X $.

Everything stated above can be generalized to the case of an arbitrary coefficient field.

References

[1] S. Lefschetz, "Intersections and transformations of complexes and manifolds" Trans. Amer. Math. Soc. , 28 (1926) pp. 1–49
[2] H. Seifert, W. Threlfall, "A textbook of topology" , Acad. Press (1980) (Translated from German)

Comments

References

[a1] J. Dugundji, A. Granas, "Fixed point theory" , PWN (1982)
How to Cite This Entry:
Lefschetz number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lefschetz_number&oldid=17310
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article