Namespaces
Variants
Actions

Difference between revisions of "Inductive definition"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
i0507501.png
 +
$#A+1 = 27 n = 0
 +
$#C+1 = 27 : ~/encyclopedia/old_files/data/I050/I.0500750 Inductive definition,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''definition by induction''
 
''definition by induction''
  
The definition of some object or concept <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i0507501.png" />, depending on a non-negative integer parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i0507502.png" />, according to the following scheme: a) the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i0507503.png" /> is given; and b) a rule is given for obtaining the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i0507504.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i0507505.png" /> and the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i0507506.png" />. A typical inductive definition is that of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i0507507.png" />: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i0507508.png" />; and b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i0507509.png" />. A more general inductive definition is definition by [[Transfinite induction|transfinite induction]] of an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075010.png" />, depending on a (transfinite) [[Ordinal number|ordinal number]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075011.png" />. This definition is effected by providing some rule that enables one to obtain the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075012.png" /> in terms of the known values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075014.png" />. For example, the sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075015.png" /> of two ordinal numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075017.png" /> is defined thus:
+
The definition of some object or concept $  A ( n) $,  
 +
depending on a non-negative integer parameter $  n $,  
 +
according to the following scheme: a) the value of $  A ( 0) $
 +
is given; and b) a rule is given for obtaining the value of $  A ( n+ 1 ) $
 +
from $  n $
 +
and the value of $  A ( n) $.  
 +
A typical inductive definition is that of the function $  n! $:  
 +
a) 0! = 1 $;  
 +
and b) $  ( n+ 1 ) ! = n! ( n+ 1 ) $.  
 +
A more general inductive definition is definition by [[Transfinite induction|transfinite induction]] of an object $  A ( \alpha ) $,  
 +
depending on a (transfinite) [[Ordinal number|ordinal number]] $  \alpha $.  
 +
This definition is effected by providing some rule that enables one to obtain the value of $  A ( \alpha ) $
 +
in terms of the known values of $  A ( \beta ) $
 +
for all $  \beta < \alpha $.  
 +
For example, the sum $  \gamma + \alpha $
 +
of two ordinal numbers $  \gamma $
 +
and $  \alpha $
 +
is defined thus:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075018.png" /></td> </tr></table>
+
$$
 +
\gamma + 0  = \gamma ,\ \
 +
\gamma + \alpha  = \sup _ {\beta < \alpha } ( \gamma + \beta + 1) \ \
 +
\textrm{ for }  \alpha > 0 .
 +
$$
  
Another extension of the notion of inductive definition is so-called generalized inductive definition, by which some class of objects is defined. This proceeds according to the following scheme: 1) certain (initial) objects of the class to be defined are given; 2) certain rules are given enabling one to obtain from objects already known to be in the class, objects of the class; and 3) those and only those objects that are obtained from the rules 1) and 2) are the objects of the required class (the latter rule is always taken for granted and is therefore often omitted). An example of a generalized inductive definition is the definition of the notion of a theorem for a given axiomatic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075019.png" />: every axiom of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075020.png" /> is a theorem; if the premises of some [[Derivation rule|derivation rule]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075021.png" /> are theorems, then the conclusion of this derivation rule is also a theorem.
+
Another extension of the notion of inductive definition is so-called generalized inductive definition, by which some class of objects is defined. This proceeds according to the following scheme: 1) certain (initial) objects of the class to be defined are given; 2) certain rules are given enabling one to obtain from objects already known to be in the class, objects of the class; and 3) those and only those objects that are obtained from the rules 1) and 2) are the objects of the required class (the latter rule is always taken for granted and is therefore often omitted). An example of a generalized inductive definition is the definition of the notion of a theorem for a given axiomatic system $  S $:  
 +
every axiom of $  S $
 +
is a theorem; if the premises of some [[Derivation rule|derivation rule]] of $  S $
 +
are theorems, then the conclusion of this derivation rule is also a theorem.
  
In order to prove that all objects of the class defined by some generalized inductive definition, for example every theorem of some axiomatic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075022.png" />, possess a certain property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075023.png" />, it suffices to show the following: every axiom of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075024.png" /> has property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075025.png" />; if the premises of some derivation rule possess property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075026.png" />, then the conclusion of this derivation rule also possesses property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050750/i05075027.png" />. Proofs of this kind are called proofs by induction, according to the definition of the corresponding concept (in the given example, a theorem) or according to the construction of the corresponding object, depending on the context.
+
In order to prove that all objects of the class defined by some generalized inductive definition, for example every theorem of some axiomatic system $  S $,  
 +
possess a certain property $  P $,  
 +
it suffices to show the following: every axiom of $  S $
 +
has property $  P $;  
 +
if the premises of some derivation rule possess property $  P $,  
 +
then the conclusion of this derivation rule also possesses property $  P $.  
 +
Proofs of this kind are called proofs by induction, according to the definition of the corresponding concept (in the given example, a theorem) or according to the construction of the corresponding object, depending on the context.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.R. Shoenfield,  "Mathematical logic" , Addison-Wesley  (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  K. Kuratowski,  A. Mostowski,  "Set theory" , North-Holland  (1968)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.R. Shoenfield,  "Mathematical logic" , Addison-Wesley  (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  K. Kuratowski,  A. Mostowski,  "Set theory" , North-Holland  (1968)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  Y.N. Moschovakis,  "Elementary introduction on abstract structures" , North-Holland  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  Y.N. Moschovakis,  "Elementary introduction on abstract structures" , North-Holland  (1974)</TD></TR></table>

Latest revision as of 22:12, 5 June 2020


definition by induction

The definition of some object or concept $ A ( n) $, depending on a non-negative integer parameter $ n $, according to the following scheme: a) the value of $ A ( 0) $ is given; and b) a rule is given for obtaining the value of $ A ( n+ 1 ) $ from $ n $ and the value of $ A ( n) $. A typical inductive definition is that of the function $ n! $: a) $ 0! = 1 $; and b) $ ( n+ 1 ) ! = n! ( n+ 1 ) $. A more general inductive definition is definition by transfinite induction of an object $ A ( \alpha ) $, depending on a (transfinite) ordinal number $ \alpha $. This definition is effected by providing some rule that enables one to obtain the value of $ A ( \alpha ) $ in terms of the known values of $ A ( \beta ) $ for all $ \beta < \alpha $. For example, the sum $ \gamma + \alpha $ of two ordinal numbers $ \gamma $ and $ \alpha $ is defined thus:

$$ \gamma + 0 = \gamma ,\ \ \gamma + \alpha = \sup _ {\beta < \alpha } ( \gamma + \beta + 1) \ \ \textrm{ for } \alpha > 0 . $$

Another extension of the notion of inductive definition is so-called generalized inductive definition, by which some class of objects is defined. This proceeds according to the following scheme: 1) certain (initial) objects of the class to be defined are given; 2) certain rules are given enabling one to obtain from objects already known to be in the class, objects of the class; and 3) those and only those objects that are obtained from the rules 1) and 2) are the objects of the required class (the latter rule is always taken for granted and is therefore often omitted). An example of a generalized inductive definition is the definition of the notion of a theorem for a given axiomatic system $ S $: every axiom of $ S $ is a theorem; if the premises of some derivation rule of $ S $ are theorems, then the conclusion of this derivation rule is also a theorem.

In order to prove that all objects of the class defined by some generalized inductive definition, for example every theorem of some axiomatic system $ S $, possess a certain property $ P $, it suffices to show the following: every axiom of $ S $ has property $ P $; if the premises of some derivation rule possess property $ P $, then the conclusion of this derivation rule also possesses property $ P $. Proofs of this kind are called proofs by induction, according to the definition of the corresponding concept (in the given example, a theorem) or according to the construction of the corresponding object, depending on the context.

References

[1] J.R. Shoenfield, "Mathematical logic" , Addison-Wesley (1967)
[2] K. Kuratowski, A. Mostowski, "Set theory" , North-Holland (1968)

Comments

References

[a1] Y.N. Moschovakis, "Elementary introduction on abstract structures" , North-Holland (1974)
How to Cite This Entry:
Inductive definition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inductive_definition&oldid=17120
This article was adapted from an original article by S.K. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article