Difference between revisions of "Toroidal harmonics"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0932801.png | ||
+ | $#A+1 = 12 n = 0 | ||
+ | $#C+1 = 12 : ~/encyclopedia/old_files/data/T093/T.0903280 Toroidal harmonics | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Functions of the points on a torus that arise when solving the [[Laplace equation|Laplace equation]] by the method of separation of variables (cf. [[Separation of variables, method of|Separation of variables, method of]]) in [[Toroidal coordinates|toroidal coordinates]] $ ( \sigma , \tau , \phi ) $. | |
+ | A [[Harmonic function|harmonic function]] $ h = h ( \sigma , \tau , \phi ) $, | ||
+ | which is a solution of the Laplace equation, can be written as a series | ||
− | + | $$ \tag{* } | |
+ | h = \sqrt {\cosh \tau - \cos \sigma } \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \sum _ {j, k = 0 } ^ \infty [ A _ {jk} P _ {j - 1/2 } ^ {(} k) ( \cosh \tau ) + B _ {jk} Q _ {j - 1/2 } ^ {(} k) ( \cosh \tau )] \times | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \times | ||
+ | ( a _ {k} \cos k \sigma + b _ {k} \sin k \sigma ) | ||
+ | ( c _ {j} \cos j \phi + d _ {j} \sin j \phi ), | ||
+ | $$ | ||
+ | |||
+ | where the $ P _ {j - 1/2 } ^ {(} k) $, | ||
+ | $ Q _ {j - 1/2 } ^ {(} k) $ | ||
+ | are the associated [[Legendre functions|Legendre functions]] with half-integer index. By setting $ \tau = \tau _ {0} $ | ||
+ | one obtains a toroidal harmonic or a surface toroidal harmonic, this in contrast with the expression (*) which, as a function of the three variables $ ( \sigma , \tau , \phi ) $, | ||
+ | is sometimes called a spatial toroidal harmonic. | ||
The series (*) is used in the solution of boundary value problems in toroidal coordinates, taking into account the expansion | The series (*) is used in the solution of boundary value problems in toroidal coordinates, taking into account the expansion | ||
− | + | $$ | |
+ | { | ||
+ | \frac{1}{\sqrt {\cosh \tau - \cos \sigma } } | ||
+ | } = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | { | ||
+ | \frac{\sqrt 2 } \pi | ||
+ | } \left ( Q _ {- 1/2 } ( | ||
+ | \cosh \tau ) + 2 \sum _ {k = 1 } ^ \infty Q _ {k | ||
+ | - 1/2 } ( \cosh \tau ) \cos k \sigma \right ) , | ||
+ | $$ | ||
− | where | + | where $ Q _ {k - 1/2 } $ |
+ | is the Legendre function of the second kind. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.M. Morse, H. Feshbach, "Methods of theoretical physics" , '''1–2''' , McGraw-Hill (1953)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.M. Morse, H. Feshbach, "Methods of theoretical physics" , '''1–2''' , McGraw-Hill (1953)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''1. The gamma function. The hypergeometric functions. Legendre functions''' , McGraw-Hill (1953) (Formula 3.10 (3))</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''1. The gamma function. The hypergeometric functions. Legendre functions''' , McGraw-Hill (1953) (Formula 3.10 (3))</TD></TR></table> |
Revision as of 08:26, 6 June 2020
Functions of the points on a torus that arise when solving the Laplace equation by the method of separation of variables (cf. Separation of variables, method of) in toroidal coordinates $ ( \sigma , \tau , \phi ) $.
A harmonic function $ h = h ( \sigma , \tau , \phi ) $,
which is a solution of the Laplace equation, can be written as a series
$$ \tag{* } h = \sqrt {\cosh \tau - \cos \sigma } \times $$
$$ \times \sum _ {j, k = 0 } ^ \infty [ A _ {jk} P _ {j - 1/2 } ^ {(} k) ( \cosh \tau ) + B _ {jk} Q _ {j - 1/2 } ^ {(} k) ( \cosh \tau )] \times $$
$$ \times ( a _ {k} \cos k \sigma + b _ {k} \sin k \sigma ) ( c _ {j} \cos j \phi + d _ {j} \sin j \phi ), $$
where the $ P _ {j - 1/2 } ^ {(} k) $, $ Q _ {j - 1/2 } ^ {(} k) $ are the associated Legendre functions with half-integer index. By setting $ \tau = \tau _ {0} $ one obtains a toroidal harmonic or a surface toroidal harmonic, this in contrast with the expression (*) which, as a function of the three variables $ ( \sigma , \tau , \phi ) $, is sometimes called a spatial toroidal harmonic.
The series (*) is used in the solution of boundary value problems in toroidal coordinates, taking into account the expansion
$$ { \frac{1}{\sqrt {\cosh \tau - \cos \sigma } } } = $$
$$ = \ { \frac{\sqrt 2 } \pi } \left ( Q _ {- 1/2 } ( \cosh \tau ) + 2 \sum _ {k = 1 } ^ \infty Q _ {k - 1/2 } ( \cosh \tau ) \cos k \sigma \right ) , $$
where $ Q _ {k - 1/2 } $ is the Legendre function of the second kind.
References
[1] | A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
[2] | P.M. Morse, H. Feshbach, "Methods of theoretical physics" , 1–2 , McGraw-Hill (1953) |
Comments
References
[a1] | H. Bateman (ed.) A. Erdélyi (ed.) , Higher transcendental functions , 1. The gamma function. The hypergeometric functions. Legendre functions , McGraw-Hill (1953) (Formula 3.10 (3)) |
Toroidal harmonics. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Toroidal_harmonics&oldid=17103