|
|
Line 1: |
Line 1: |
− | The [[Simplex|simplex]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871701.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871702.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871703.png" /> with vertices at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871704.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871705.png" /> (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871706.png" /> stands in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871707.png" />-th place), i.e.
| + | <!-- |
| + | s0871701.png |
| + | $#A+1 = 46 n = 0 |
| + | $#C+1 = 46 : ~/encyclopedia/old_files/data/S087/S.0807170 Standard simplex |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871708.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | For any topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871709.png" />, the continuous mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717010.png" /> are the singular simplices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717011.png" /> (see [[Singular homology|Singular homology]]).
| + | The [[Simplex|simplex]] $ \Delta ^ {n} $ |
| + | of dimension $ n $ |
| + | in the space $ \mathbf R ^ {n+} 1 $ |
| + | with vertices at the points $ e _ {i} = ( 0 \dots 1 \dots 0) $, |
| + | $ i = 0 \dots n $( |
| + | the $ 1 $ |
| + | stands in the $ i $- |
| + | th place), i.e. |
| | | |
− | The [[Simplicial complex|simplicial complex]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717012.png" /> whose vertices are the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717014.png" />, while the simplices are arbitrary non-empty subsets of vertices. The geometric realization of this simplicial complex coincides with the standard simplex in the sense of 1).
| + | $$ |
| + | \Delta ^ {n} = \{ {( t _ {0} \dots t _ {n+} 1 ) } : {0 \leq t _ {i} \leq 1, \sum t _ {i} = 1 } \} |
| + | \subset \mathbf R ^ {n+} 1 . |
| + | $$ |
| | | |
− | The [[Simplicial set|simplicial set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717015.png" />, obtained by applying the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717016.png" /> to the simplicial scheme in 2), which is a contra-variant functor on the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717017.png" /> (see [[Simplicial object in a category|Simplicial object in a category]]), for which
| + | For any topological space $ X $, |
| + | the continuous mappings $ \sigma : \Delta ^ {n} \rightarrow X $ |
| + | are the singular simplices of $ X $( |
| + | see [[Singular homology|Singular homology]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717018.png" /></td> </tr></table>
| + | The [[Simplicial complex|simplicial complex]] $ \Delta ^ {n} $ |
| + | whose vertices are the points $ l _ {i} $, |
| + | $ 0 \leq i \leq n $, |
| + | while the simplices are arbitrary non-empty subsets of vertices. The geometric realization of this simplicial complex coincides with the standard simplex in the sense of 1). |
| | | |
− | Thus, non-decreasing sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717019.png" /> of numbers from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717020.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717021.png" />-dimensional simplices of the simplicial set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717022.png" />, while the face operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717023.png" /> and the degeneracy operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717024.png" /> of this simplicial set are defined by the formulas
| + | The [[Simplicial set|simplicial set]] $ \Delta ^ {n} $, |
| + | obtained by applying the functor $ O ^ {+} $ |
| + | to the simplicial scheme in 2), which is a contra-variant functor on the category $ \Delta $( |
| + | see [[Simplicial object in a category|Simplicial object in a category]]), for which |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717025.png" /></td> </tr></table>
| + | $$ |
| + | \Delta ^ {n} ([ m]) = \Delta ([ m], [ n]),\ \ |
| + | \Delta ^ {n} ( \lambda )( \mu ) = \mu \lambda . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717026.png" /></td> </tr></table>
| + | Thus, non-decreasing sequences $ ( a _ {0} \dots a _ {m} ) $ |
| + | of numbers from $ [ n] $ |
| + | are $ m $- |
| + | dimensional simplices of the simplicial set $ \Delta ^ {n} $, |
| + | while the face operators $ d _ {i} $ |
| + | and the degeneracy operators $ s _ {i} $ |
| + | of this simplicial set are defined by the formulas |
| | | |
− | where the sign <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717027.png" /> signifies that the symbol beneath it is deleted. The simplicial set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717028.png" /> is also called a simplicial segment. The simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717029.png" /> (the unique non-degenerate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717030.png" />-dimensional simplex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717031.png" />) is called the fundamental simplex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717032.png" />. The smallest simplicial subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717033.png" /> containing all simplices of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717034.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717035.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717036.png" /> and is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717038.png" />-th standard horn.
| + | $$ |
| + | d _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i-} 1 , \widehat{a} _ {i} , a _ {i+} 1 \dots a _ {m} ), |
| + | $$ |
| | | |
− | For any simplicial set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717039.png" /> and an arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717040.png" />-dimensional simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717041.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717042.png" />, there is a unique simplicial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717043.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717044.png" />. This mapping is said to be characteristic for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717045.png" />.
| + | $$ |
| + | s _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i} , a _ {i} , a _ {i+} 1 \dots a _ {m} ), |
| + | $$ |
| | | |
− | The fundamental simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717046.png" /> of a simplicial set as in 3), which in this instance is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s08717047.png" />. | + | where the sign $ \widehat{ {}} $ |
| + | signifies that the symbol beneath it is deleted. The simplicial set $ \Delta ^ {1} $ |
| + | is also called a simplicial segment. The simplex $ \iota _ {n} = ( 0, 1 \dots n) $( |
| + | the unique non-degenerate $ n $- |
| + | dimensional simplex of $ \Delta ^ {n} $) |
| + | is called the fundamental simplex of $ \Delta ^ {n} $. |
| + | The smallest simplicial subset of $ \Delta ^ {n+} 1 $ |
| + | containing all simplices of the form $ d _ {i} \iota _ {n+} 1 $ |
| + | with $ i \neq k $ |
| + | is denoted by $ \Delta _ {k} ^ {n} $ |
| + | and is called the $ k $- |
| + | th standard horn. |
| | | |
| + | For any simplicial set $ K $ |
| + | and an arbitrary $ n $- |
| + | dimensional simplex $ \sigma $ |
| + | of $ K $, |
| + | there is a unique simplicial mapping $ \chi _ \sigma : \Delta ^ {n} \rightarrow K $ |
| + | for which $ \chi ( \iota _ {n} ) = \sigma $. |
| + | This mapping is said to be characteristic for $ \sigma $. |
| | | |
| + | The fundamental simplex $ \iota _ {n} $ |
| + | of a simplicial set as in 3), which in this instance is denoted by $ \Delta _ {n} $. |
| | | |
| ====Comments==== | | ====Comments==== |
| For references see [[Simplicial set|Simplicial set]]. | | For references see [[Simplicial set|Simplicial set]]. |
The simplex $ \Delta ^ {n} $
of dimension $ n $
in the space $ \mathbf R ^ {n+} 1 $
with vertices at the points $ e _ {i} = ( 0 \dots 1 \dots 0) $,
$ i = 0 \dots n $(
the $ 1 $
stands in the $ i $-
th place), i.e.
$$
\Delta ^ {n} = \{ {( t _ {0} \dots t _ {n+} 1 ) } : {0 \leq t _ {i} \leq 1, \sum t _ {i} = 1 } \}
\subset \mathbf R ^ {n+} 1 .
$$
For any topological space $ X $,
the continuous mappings $ \sigma : \Delta ^ {n} \rightarrow X $
are the singular simplices of $ X $(
see Singular homology).
The simplicial complex $ \Delta ^ {n} $
whose vertices are the points $ l _ {i} $,
$ 0 \leq i \leq n $,
while the simplices are arbitrary non-empty subsets of vertices. The geometric realization of this simplicial complex coincides with the standard simplex in the sense of 1).
The simplicial set $ \Delta ^ {n} $,
obtained by applying the functor $ O ^ {+} $
to the simplicial scheme in 2), which is a contra-variant functor on the category $ \Delta $(
see Simplicial object in a category), for which
$$
\Delta ^ {n} ([ m]) = \Delta ([ m], [ n]),\ \
\Delta ^ {n} ( \lambda )( \mu ) = \mu \lambda .
$$
Thus, non-decreasing sequences $ ( a _ {0} \dots a _ {m} ) $
of numbers from $ [ n] $
are $ m $-
dimensional simplices of the simplicial set $ \Delta ^ {n} $,
while the face operators $ d _ {i} $
and the degeneracy operators $ s _ {i} $
of this simplicial set are defined by the formulas
$$
d _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i-} 1 , \widehat{a} _ {i} , a _ {i+} 1 \dots a _ {m} ),
$$
$$
s _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i} , a _ {i} , a _ {i+} 1 \dots a _ {m} ),
$$
where the sign $ \widehat{ {}} $
signifies that the symbol beneath it is deleted. The simplicial set $ \Delta ^ {1} $
is also called a simplicial segment. The simplex $ \iota _ {n} = ( 0, 1 \dots n) $(
the unique non-degenerate $ n $-
dimensional simplex of $ \Delta ^ {n} $)
is called the fundamental simplex of $ \Delta ^ {n} $.
The smallest simplicial subset of $ \Delta ^ {n+} 1 $
containing all simplices of the form $ d _ {i} \iota _ {n+} 1 $
with $ i \neq k $
is denoted by $ \Delta _ {k} ^ {n} $
and is called the $ k $-
th standard horn.
For any simplicial set $ K $
and an arbitrary $ n $-
dimensional simplex $ \sigma $
of $ K $,
there is a unique simplicial mapping $ \chi _ \sigma : \Delta ^ {n} \rightarrow K $
for which $ \chi ( \iota _ {n} ) = \sigma $.
This mapping is said to be characteristic for $ \sigma $.
The fundamental simplex $ \iota _ {n} $
of a simplicial set as in 3), which in this instance is denoted by $ \Delta _ {n} $.
For references see Simplicial set.