Namespaces
Variants
Actions

Difference between revisions of "Reflection principle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
r0805401.png
 +
$#A+1 = 60 n = 0
 +
$#C+1 = 60 : ~/encyclopedia/old_files/data/R080/R.0800540 Reflection principle
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A generalization of the [[Symmetry principle|symmetry principle]] for harmonic functions to harmonic functions in an arbitrary number of independent variables. Some formulations of the reflection principle are as follows:
 
A generalization of the [[Symmetry principle|symmetry principle]] for harmonic functions to harmonic functions in an arbitrary number of independent variables. Some formulations of the reflection principle are as follows:
  
1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r0805401.png" /> be a domain in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r0805402.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r0805403.png" /> that is bounded by a Jordan surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r0805404.png" /> (in particular, a smooth or piecewise-smooth surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r0805405.png" /> without self-intersections) containing a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r0805406.png" />-dimensional subdomain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r0805407.png" /> of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r0805408.png" />-dimensional hyperplane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r0805409.png" />. If the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054010.png" /> is harmonic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054011.png" />, continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054012.png" /> and equal to zero everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054013.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054014.png" /> can be extended as a [[Harmonic function|harmonic function]] across <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054015.png" /> into the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054016.png" /> that is symmetric to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054017.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054018.png" />, by means of the equality
+
1) Let $  G $
 +
be a domain in a $  k $-
 +
dimensional Euclidean space $  ( k \geq  1) $
 +
that is bounded by a Jordan surface $  \Gamma $(
 +
in particular, a smooth or piecewise-smooth surface $  \Gamma $
 +
without self-intersections) containing a $  ( k- 1) $-
 +
dimensional subdomain $  \sigma $
 +
of a $  ( k- 1) $-
 +
dimensional hyperplane $  L $.  
 +
If the function $  U( x _ {1} \dots x _ {k} ) $
 +
is harmonic in $  G $,  
 +
continuous on $  G \cup \sigma $
 +
and equal to zero everywhere on $  \sigma $,  
 +
then $  U( x _ {1} \dots x _ {k} ) $
 +
can be extended as a [[Harmonic function|harmonic function]] across $  \sigma $
 +
into the domain $  G  ^ {*} $
 +
that is symmetric to $  G $
 +
relative to $  L $,  
 +
by means of the equality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054019.png" /></td> </tr></table>
+
$$
 +
U( x _ {1}  ^ {*} \dots x _ {k}  ^ {*} )  = - U( x _ {1} \dots x _ {k} ),
 +
$$
  
where the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054021.png" /> are symmetric relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054022.png" />.
+
where the points $  ( x _ {1}  ^ {*} \dots x _ {k}  ^ {*} ) \in G  ^ {*} $
 +
and $  ( x _ {1} \dots x _ {k} ) \in G $
 +
are symmetric relative to $  L $.
  
2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054023.png" /> be a domain of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054024.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054025.png" /> that is bounded by a Jordan surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054026.png" /> containing a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054027.png" />-dimensional subdomain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054028.png" /> of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054029.png" />-dimensional sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054030.png" /> of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054031.png" /> with centre at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054033.png" /> is harmonic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054034.png" />, continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054035.png" /> and equal to zero everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054036.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054037.png" /> can be extended as a harmonic function across <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054038.png" /> into the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054039.png" /> that is symmetric to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054040.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054041.png" /> (i.e. obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054042.png" /> by means of the transformation of inverse radii — inversions — relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054043.png" />). This continuation is achieved by means of the [[Kelvin transformation|Kelvin transformation]], taken with the opposite sign, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054044.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054045.png" />, namely:
+
2) Let $  G $
 +
be a domain of a $  k $-
 +
dimensional Euclidean space $  ( k \geq  1) $
 +
that is bounded by a Jordan surface $  \Gamma $
 +
containing a $  ( k- 1) $-
 +
dimensional subdomain $  \sigma $
 +
of a $  ( k- 1) $-
 +
dimensional sphere $  \Sigma $
 +
of radius $  R > 0 $
 +
with centre at a point $  M  ^ {0} = ( x _ {1}  ^ {0} \dots x _ {k}  ^ {0} ) $.  
 +
If $  U( x _ {1} \dots x _ {k} ) $
 +
is harmonic in $  G $,  
 +
continuous on $  G \cup \sigma $
 +
and equal to zero everywhere on $  \sigma $,  
 +
then $  U( x _ {1} \dots x _ {k} ) $
 +
can be extended as a harmonic function across $  \sigma $
 +
into the domain $  G  ^ {*} $
 +
that is symmetric to $  G $
 +
relative to $  \Sigma $(
 +
i.e. obtained from $  G $
 +
by means of the transformation of inverse radii — inversions — relative to $  \Sigma $).  
 +
This continuation is achieved by means of the [[Kelvin transformation|Kelvin transformation]], taken with the opposite sign, of $  U $
 +
relative to $  \Sigma $,  
 +
namely:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054046.png" /></td> </tr></table>
+
$$
 +
U( x _ {1}  ^ {*} \dots x _ {k}  ^ {*} ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054047.png" /></td> </tr></table>
+
$$
 +
= \
 +
-
 +
\frac{R  ^ {k-} 2 }{r  ^ {k-} 2 }
 +
U \left ( x _ {1}  ^ {0} + R
 +
^ {2}
 +
\frac{x _ {1}  ^ {*} - x _ {1}  ^ {0} }{r  ^ {2} }
 +
\dots x _ {k}  ^ {0} + R  ^ {2}
 +
\frac{x _ {k}  ^ {*} - x _ {k}  ^ {0} }{r ^ {2} }
 +
\right ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054049.png" />. Under the transformation of inverse radii relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054050.png" />, the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054051.png" /> is mapped to the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054052.png" />, in correspondence with
+
where $  ( x _ {1}  ^ {*} \dots x _ {k}  ^ {*} ) \in G  ^ {*} $,
 +
$  r = \sqrt {( x _ {1}  ^ {*} - x _ {1}  ^ {0} )  ^ {2} + \dots + ( x _ {k}  ^ {*} - x _ {k}  ^ {0} )  ^ {2} } $.  
 +
Under the transformation of inverse radii relative to $  \Sigma $,  
 +
the point $  M  ^ {*} = ( x _ {1}  ^ {*} \dots x _ {k}  ^ {*} ) $
 +
is mapped to the point $  M( x _ {1} \dots x _ {k} ) $,  
 +
in correspondence with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054053.png" /></td> </tr></table>
+
$$
 +
x _ {1} - x _ {1}  ^ {0}  = R  ^ {2}
 +
\frac{x _ {1}  ^ {*} - x _ {1}  ^ {0} }{r  ^ {2} }
 +
\dots x _ {k} - x _ {k}  ^ {0}  = \
 +
R  ^ {2}
 +
\frac{x _ {k}  ^ {*} - x _ {k}  ^ {0} }{r ^ {2} }
 +
,
 +
$$
  
such that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054054.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054055.png" /> belongs to the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054056.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054057.png" /> is given), and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054058.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054059.png" />.
+
such that if $  M  ^ {*} \in G  ^ {*} $,  
 +
then $  M $
 +
belongs to the domain $  G $(
 +
where $  U $
 +
is given), and if $  M  ^ {*} \in \sigma $,  
 +
then $  M = M  ^ {*} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R. Courant,  D. Hilbert,  "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience  (1965)  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R. Courant,  D. Hilbert,  "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience  (1965)  (Translated from German)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In the non-Soviet literature,  "reflection principle"  refers also to the [[Riemann–Schwarz principle|Riemann–Schwarz principle]] and its generalizations to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080540/r08054060.png" />.
+
In the non-Soviet literature,  "reflection principle"  refers also to the [[Riemann–Schwarz principle|Riemann–Schwarz principle]] and its generalizations to $  \mathbf C  ^ {n} $.
  
 
Cf. also [[Schwarz symmetry theorem|Schwarz symmetry theorem]].
 
Cf. also [[Schwarz symmetry theorem|Schwarz symmetry theorem]].

Revision as of 08:10, 6 June 2020


A generalization of the symmetry principle for harmonic functions to harmonic functions in an arbitrary number of independent variables. Some formulations of the reflection principle are as follows:

1) Let $ G $ be a domain in a $ k $- dimensional Euclidean space $ ( k \geq 1) $ that is bounded by a Jordan surface $ \Gamma $( in particular, a smooth or piecewise-smooth surface $ \Gamma $ without self-intersections) containing a $ ( k- 1) $- dimensional subdomain $ \sigma $ of a $ ( k- 1) $- dimensional hyperplane $ L $. If the function $ U( x _ {1} \dots x _ {k} ) $ is harmonic in $ G $, continuous on $ G \cup \sigma $ and equal to zero everywhere on $ \sigma $, then $ U( x _ {1} \dots x _ {k} ) $ can be extended as a harmonic function across $ \sigma $ into the domain $ G ^ {*} $ that is symmetric to $ G $ relative to $ L $, by means of the equality

$$ U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = - U( x _ {1} \dots x _ {k} ), $$

where the points $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $ and $ ( x _ {1} \dots x _ {k} ) \in G $ are symmetric relative to $ L $.

2) Let $ G $ be a domain of a $ k $- dimensional Euclidean space $ ( k \geq 1) $ that is bounded by a Jordan surface $ \Gamma $ containing a $ ( k- 1) $- dimensional subdomain $ \sigma $ of a $ ( k- 1) $- dimensional sphere $ \Sigma $ of radius $ R > 0 $ with centre at a point $ M ^ {0} = ( x _ {1} ^ {0} \dots x _ {k} ^ {0} ) $. If $ U( x _ {1} \dots x _ {k} ) $ is harmonic in $ G $, continuous on $ G \cup \sigma $ and equal to zero everywhere on $ \sigma $, then $ U( x _ {1} \dots x _ {k} ) $ can be extended as a harmonic function across $ \sigma $ into the domain $ G ^ {*} $ that is symmetric to $ G $ relative to $ \Sigma $( i.e. obtained from $ G $ by means of the transformation of inverse radii — inversions — relative to $ \Sigma $). This continuation is achieved by means of the Kelvin transformation, taken with the opposite sign, of $ U $ relative to $ \Sigma $, namely:

$$ U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = $$

$$ = \ - \frac{R ^ {k-} 2 }{r ^ {k-} 2 } U \left ( x _ {1} ^ {0} + R ^ {2} \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } \dots x _ {k} ^ {0} + R ^ {2} \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } \right ) , $$

where $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $, $ r = \sqrt {( x _ {1} ^ {*} - x _ {1} ^ {0} ) ^ {2} + \dots + ( x _ {k} ^ {*} - x _ {k} ^ {0} ) ^ {2} } $. Under the transformation of inverse radii relative to $ \Sigma $, the point $ M ^ {*} = ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) $ is mapped to the point $ M( x _ {1} \dots x _ {k} ) $, in correspondence with

$$ x _ {1} - x _ {1} ^ {0} = R ^ {2} \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } \dots x _ {k} - x _ {k} ^ {0} = \ R ^ {2} \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } , $$

such that if $ M ^ {*} \in G ^ {*} $, then $ M $ belongs to the domain $ G $( where $ U $ is given), and if $ M ^ {*} \in \sigma $, then $ M = M ^ {*} $.

References

[1] R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German)

Comments

In the non-Soviet literature, "reflection principle" refers also to the Riemann–Schwarz principle and its generalizations to $ \mathbf C ^ {n} $.

Cf. also Schwarz symmetry theorem.

How to Cite This Entry:
Reflection principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reflection_principle&oldid=17033
This article was adapted from an original article by E.P. Dolzhenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article