Difference between revisions of "Reflection principle"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | r0805401.png | ||
+ | $#A+1 = 60 n = 0 | ||
+ | $#C+1 = 60 : ~/encyclopedia/old_files/data/R080/R.0800540 Reflection principle | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A generalization of the [[Symmetry principle|symmetry principle]] for harmonic functions to harmonic functions in an arbitrary number of independent variables. Some formulations of the reflection principle are as follows: | A generalization of the [[Symmetry principle|symmetry principle]] for harmonic functions to harmonic functions in an arbitrary number of independent variables. Some formulations of the reflection principle are as follows: | ||
− | 1) Let | + | 1) Let $ G $ |
+ | be a domain in a $ k $- | ||
+ | dimensional Euclidean space $ ( k \geq 1) $ | ||
+ | that is bounded by a Jordan surface $ \Gamma $( | ||
+ | in particular, a smooth or piecewise-smooth surface $ \Gamma $ | ||
+ | without self-intersections) containing a $ ( k- 1) $- | ||
+ | dimensional subdomain $ \sigma $ | ||
+ | of a $ ( k- 1) $- | ||
+ | dimensional hyperplane $ L $. | ||
+ | If the function $ U( x _ {1} \dots x _ {k} ) $ | ||
+ | is harmonic in $ G $, | ||
+ | continuous on $ G \cup \sigma $ | ||
+ | and equal to zero everywhere on $ \sigma $, | ||
+ | then $ U( x _ {1} \dots x _ {k} ) $ | ||
+ | can be extended as a [[Harmonic function|harmonic function]] across $ \sigma $ | ||
+ | into the domain $ G ^ {*} $ | ||
+ | that is symmetric to $ G $ | ||
+ | relative to $ L $, | ||
+ | by means of the equality | ||
− | + | $$ | |
+ | U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = - U( x _ {1} \dots x _ {k} ), | ||
+ | $$ | ||
− | where the points | + | where the points $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $ |
+ | and $ ( x _ {1} \dots x _ {k} ) \in G $ | ||
+ | are symmetric relative to $ L $. | ||
− | 2) Let | + | 2) Let $ G $ |
+ | be a domain of a $ k $- | ||
+ | dimensional Euclidean space $ ( k \geq 1) $ | ||
+ | that is bounded by a Jordan surface $ \Gamma $ | ||
+ | containing a $ ( k- 1) $- | ||
+ | dimensional subdomain $ \sigma $ | ||
+ | of a $ ( k- 1) $- | ||
+ | dimensional sphere $ \Sigma $ | ||
+ | of radius $ R > 0 $ | ||
+ | with centre at a point $ M ^ {0} = ( x _ {1} ^ {0} \dots x _ {k} ^ {0} ) $. | ||
+ | If $ U( x _ {1} \dots x _ {k} ) $ | ||
+ | is harmonic in $ G $, | ||
+ | continuous on $ G \cup \sigma $ | ||
+ | and equal to zero everywhere on $ \sigma $, | ||
+ | then $ U( x _ {1} \dots x _ {k} ) $ | ||
+ | can be extended as a harmonic function across $ \sigma $ | ||
+ | into the domain $ G ^ {*} $ | ||
+ | that is symmetric to $ G $ | ||
+ | relative to $ \Sigma $( | ||
+ | i.e. obtained from $ G $ | ||
+ | by means of the transformation of inverse radii — inversions — relative to $ \Sigma $). | ||
+ | This continuation is achieved by means of the [[Kelvin transformation|Kelvin transformation]], taken with the opposite sign, of $ U $ | ||
+ | relative to $ \Sigma $, | ||
+ | namely: | ||
− | + | $$ | |
+ | U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | - | ||
+ | \frac{R ^ {k-} 2 }{r ^ {k-} 2 } | ||
+ | U \left ( x _ {1} ^ {0} + R | ||
+ | ^ {2} | ||
+ | \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } | ||
+ | \dots x _ {k} ^ {0} + R ^ {2} | ||
+ | \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } | ||
+ | \right ) , | ||
+ | $$ | ||
− | where | + | where $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $, |
+ | $ r = \sqrt {( x _ {1} ^ {*} - x _ {1} ^ {0} ) ^ {2} + \dots + ( x _ {k} ^ {*} - x _ {k} ^ {0} ) ^ {2} } $. | ||
+ | Under the transformation of inverse radii relative to $ \Sigma $, | ||
+ | the point $ M ^ {*} = ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) $ | ||
+ | is mapped to the point $ M( x _ {1} \dots x _ {k} ) $, | ||
+ | in correspondence with | ||
− | + | $$ | |
+ | x _ {1} - x _ {1} ^ {0} = R ^ {2} | ||
+ | \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } | ||
+ | \dots x _ {k} - x _ {k} ^ {0} = \ | ||
+ | R ^ {2} | ||
+ | \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } | ||
+ | , | ||
+ | $$ | ||
− | such that if | + | such that if $ M ^ {*} \in G ^ {*} $, |
+ | then $ M $ | ||
+ | belongs to the domain $ G $( | ||
+ | where $ U $ | ||
+ | is given), and if $ M ^ {*} \in \sigma $, | ||
+ | then $ M = M ^ {*} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience (1965) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience (1965) (Translated from German)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | In the non-Soviet literature, "reflection principle" refers also to the [[Riemann–Schwarz principle|Riemann–Schwarz principle]] and its generalizations to | + | In the non-Soviet literature, "reflection principle" refers also to the [[Riemann–Schwarz principle|Riemann–Schwarz principle]] and its generalizations to $ \mathbf C ^ {n} $. |
Cf. also [[Schwarz symmetry theorem|Schwarz symmetry theorem]]. | Cf. also [[Schwarz symmetry theorem|Schwarz symmetry theorem]]. |
Revision as of 08:10, 6 June 2020
A generalization of the symmetry principle for harmonic functions to harmonic functions in an arbitrary number of independent variables. Some formulations of the reflection principle are as follows:
1) Let $ G $ be a domain in a $ k $- dimensional Euclidean space $ ( k \geq 1) $ that is bounded by a Jordan surface $ \Gamma $( in particular, a smooth or piecewise-smooth surface $ \Gamma $ without self-intersections) containing a $ ( k- 1) $- dimensional subdomain $ \sigma $ of a $ ( k- 1) $- dimensional hyperplane $ L $. If the function $ U( x _ {1} \dots x _ {k} ) $ is harmonic in $ G $, continuous on $ G \cup \sigma $ and equal to zero everywhere on $ \sigma $, then $ U( x _ {1} \dots x _ {k} ) $ can be extended as a harmonic function across $ \sigma $ into the domain $ G ^ {*} $ that is symmetric to $ G $ relative to $ L $, by means of the equality
$$ U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = - U( x _ {1} \dots x _ {k} ), $$
where the points $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $ and $ ( x _ {1} \dots x _ {k} ) \in G $ are symmetric relative to $ L $.
2) Let $ G $ be a domain of a $ k $- dimensional Euclidean space $ ( k \geq 1) $ that is bounded by a Jordan surface $ \Gamma $ containing a $ ( k- 1) $- dimensional subdomain $ \sigma $ of a $ ( k- 1) $- dimensional sphere $ \Sigma $ of radius $ R > 0 $ with centre at a point $ M ^ {0} = ( x _ {1} ^ {0} \dots x _ {k} ^ {0} ) $. If $ U( x _ {1} \dots x _ {k} ) $ is harmonic in $ G $, continuous on $ G \cup \sigma $ and equal to zero everywhere on $ \sigma $, then $ U( x _ {1} \dots x _ {k} ) $ can be extended as a harmonic function across $ \sigma $ into the domain $ G ^ {*} $ that is symmetric to $ G $ relative to $ \Sigma $( i.e. obtained from $ G $ by means of the transformation of inverse radii — inversions — relative to $ \Sigma $). This continuation is achieved by means of the Kelvin transformation, taken with the opposite sign, of $ U $ relative to $ \Sigma $, namely:
$$ U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = $$
$$ = \ - \frac{R ^ {k-} 2 }{r ^ {k-} 2 } U \left ( x _ {1} ^ {0} + R ^ {2} \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } \dots x _ {k} ^ {0} + R ^ {2} \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } \right ) , $$
where $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $, $ r = \sqrt {( x _ {1} ^ {*} - x _ {1} ^ {0} ) ^ {2} + \dots + ( x _ {k} ^ {*} - x _ {k} ^ {0} ) ^ {2} } $. Under the transformation of inverse radii relative to $ \Sigma $, the point $ M ^ {*} = ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) $ is mapped to the point $ M( x _ {1} \dots x _ {k} ) $, in correspondence with
$$ x _ {1} - x _ {1} ^ {0} = R ^ {2} \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } \dots x _ {k} - x _ {k} ^ {0} = \ R ^ {2} \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } , $$
such that if $ M ^ {*} \in G ^ {*} $, then $ M $ belongs to the domain $ G $( where $ U $ is given), and if $ M ^ {*} \in \sigma $, then $ M = M ^ {*} $.
References
[1] | R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German) |
Comments
In the non-Soviet literature, "reflection principle" refers also to the Riemann–Schwarz principle and its generalizations to $ \mathbf C ^ {n} $.
Cf. also Schwarz symmetry theorem.
Reflection principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reflection_principle&oldid=17033