Namespaces
Variants
Actions

Difference between revisions of "Bessel processes"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A family of continuous Markov processes (cf. [[Markov process|Markov process]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b1104301.png" /> taking values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b1104302.png" />, parametrized by their dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b1104303.png" />.
+
<!--
 +
b1104301.png
 +
$#A+1 = 40 n = 0
 +
$#C+1 = 40 : ~/encyclopedia/old_files/data/B110/B.1100430 Bessel processes
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b1104304.png" /> is an integer, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b1104305.png" /> may be represented as the Euclidean norm of [[Brownian motion|Brownian motion]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b1104306.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b1104307.png" /> be the law of the square, starting from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b1104308.png" />, of such a process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b1104309.png" />, considered as a [[Random variable|random variable]] taking values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043010.png" />. This law is infinitely divisible (cf. [[#References|[a6]]] and [[Infinitely-divisible distribution|Infinitely-divisible distribution]]). Hence, there exists a unique family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043011.png" /> of laws on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043012.png" /> such that
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
A family of continuous Markov processes (cf. [[Markov process|Markov process]])  $  ( R _ {t} , t \geq 0 ) $
 +
taking values in  $  \mathbf R _ {+} $,
 +
parametrized by their dimension  $  \delta $.
  
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043014.png" /> indicates the convolution of probabilities on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043015.png" />), which coincides with the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043016.png" />, for integer dimensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043017.png" />.
+
When  $  \delta = d $
 +
is an integer,  $  ( R _ {t} ,t \geq 0 ) $
 +
may be represented as the Euclidean norm of [[Brownian motion|Brownian motion]] in  $  \mathbf R  ^ {d} $.  
 +
Let  $  Q _ {x}  ^ {d} $
 +
be the law of the square, starting from  $  x \geq 0 $,
 +
of such a process  $  ( R _ {t} ,t \geq 0 ) $,
 +
considered as a [[Random variable|random variable]] taking values in  $  \Omega = C ( \mathbf R _ {+} , \mathbf R _ {+} ) $.  
 +
This law is infinitely divisible (cf. [[#References|[a6]]] and [[Infinitely-divisible distribution|Infinitely-divisible distribution]]). Hence, there exists a unique family $  ( Q _ {x}  ^  \delta  ;x \geq 0, \delta \geq 0 ) $
 +
of laws on  $  \Omega $
 +
such that
  
The process of coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043018.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043019.png" />, under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043020.png" />, satisfies the equation
+
$$ \tag{a1 }
 +
Q _ {x}  ^  \delta  * Q _ {x  ^  \prime  } ^ {\delta  ^  \prime  } = Q _ {x + x  ^  \prime  } ^ {\delta + \delta  ^  \prime  }  \textrm{ for  all  }  \delta, \delta  ^  \prime  ,x,x  ^  \prime  \geq 0
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
( $  * $
 +
indicates the convolution of probabilities on  $  \Omega $),
 +
which coincides with the family  $  ( Q _ {x}  ^ {d} ,x \geq 0 ) $,
 +
for integer dimensions  $  d $.
  
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043022.png" /> a one-dimensional Brownian motion. Equation (a2) admits a unique strong solution, with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043023.png" />. Call its square root a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043025.png" />-dimensional Bessel process.
+
The process of coordinates  $  ( X _ {t} ,t \geq 0 ) $
 +
on  $  \Omega $,
 +
under  $  Q _ {x}  ^  \delta  $,  
 +
satisfies the equation
  
Bessel processes also appear naturally in the Lamperti representation of the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043026.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043028.png" /> denotes a one-dimensional Brownian motion. This representation is:
+
$$ \tag{a2 }
 +
X _ {t} = x + 2 \int\limits _ { 0 } ^ { t }  {\sqrt {X _ {s} } }  {d \beta _ {s} } + \delta t, \quad t \geq 0,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
with  $  ( \beta _ {s} ,s \geq 0 ) $
 +
a one-dimensional Brownian motion. Equation (a2) admits a unique strong solution, with values in  $  \mathbf R _ {+} $.  
 +
Call its square root a  $  \delta $-
 +
dimensional Bessel process.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043030.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043031.png" />-dimensional Bessel process. This representation (a3) has a number of consequences, among which absolute continuity properties of the laws <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043032.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043033.png" /> varies and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043034.png" /> is fixed, and also the fact that a power of a Bessel process is another Bessel process, up to a time-change.
+
Bessel processes also appear naturally in the Lamperti representation of the process $  ( { \mathop{\rm exp} } ( B _ {t} + \nu t ) ,t \geq 0 ) $,  
 +
where  $  \nu \in \mathbf R $
 +
and $  ( B _ {t} ,t \geq 0 ) $
 +
denotes a one-dimensional Brownian motion. This representation is:
  
Special representations of Bessel processes of dimensions one and three, respectively, have been obtained by P. Lévy, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043035.png" />, and by J. Pitman as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043037.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043038.png" /> is a one-dimensional Brownian motion.
+
$$ \tag{a3 }
 +
{ \mathop{\rm exp} } ( B _ {t} + \nu t ) = R _ {\int\limits _ { 0 }  ^ { t }  { { \mathop{\rm exp} } ( 2 ( B _ {s} + \nu s ) ) }  {ds } } , t \geq 0,
 +
$$
  
Finally, the laws of the local times of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043039.png" /> considered up to first hitting times, or inverse local times, can be expressed in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110430/b11043041.png" />, respectively: this is the content of the celebrated Ray–Knight theorems (1963; [[#References|[a1]]], [[#References|[a5]]]) on Brownian local times. These theorems have been extended to a large class of processes, including real-valued diffusions.
+
where  $  R $
 +
is a  $  \delta = 2 ( 1 + \nu ) $-
 +
dimensional Bessel process. This representation (a3) has a number of consequences, among which absolute continuity properties of the laws  $  Q _ {x}  ^  \delta  $
 +
as  $  \delta $
 +
varies and  $  x >0 $
 +
is fixed, and also the fact that a power of a Bessel process is another Bessel process, up to a time-change.
 +
 
 +
Special representations of Bessel processes of dimensions one and three, respectively, have been obtained by P. Lévy, as  $  ( S _ {t} - B _ {t} ,t \geq 0 ) $,
 +
and by J. Pitman as  $  ( 2S _ {t} - B _ {t} ,t \geq 0 ) $,
 +
where  $  S _ {t} =  \sup  _ {s \leq  t }  B _ {s} $,
 +
and  $  ( B _ {t} ,t \geq 0 ) $
 +
is a one-dimensional Brownian motion.
 +
 
 +
Finally, the laws of the local times of $  ( B _ {t} ,t \geq 0 ) $
 +
considered up to first hitting times, or inverse local times, can be expressed in terms of $  Q _ {0}  ^ {2} $
 +
and $  Q _ {x}  ^ {0} $,  
 +
respectively: this is the content of the celebrated Ray–Knight theorems (1963; [[#References|[a1]]], [[#References|[a5]]]) on Brownian local times. These theorems have been extended to a large class of processes, including real-valued diffusions.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F.B. Knight,  "Random walks and a sojourn density process of Brownian motion"  ''Trans. Amer. Math. Soc.'' , '''107'''  (1963)  pp. 56–86</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.W. Pitman,  "One-dimensional Brownian motion and the three-dimensional Bessel process"  ''Adv. Applied Probab.'' , '''7'''  (1975)  pp. 511–526</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.W. Pitman,  M. Yor,  "Bessel processes and infinitely divisible laws"  D. Williams (ed.) , ''Stochastic Integrals'' , ''Lecture Notes in Mathematics'' , '''851''' , Springer  (1981)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J.W. Pitman,  M. Yor,  "A decomposition of Bessel bridges"  ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''59'''  (1982)  pp. 425–457</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  D.B. Ray,  "Sojourn times of a diffusion process"  ''Ill. J. Math.'' , '''7'''  (1963)  pp. 615–630</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  T. Shiga,  S. Watanabe,  "Bessel diffusions as a one-parameter family of one-dimensional diffusion processes"  ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''27'''  (1973)  pp. 37–46</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D. Revuz,  M. Yor,  "Continuous martingales and Brownian motion" , Springer  (1994)  (Edition: Second)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F.B. Knight,  "Random walks and a sojourn density process of Brownian motion"  ''Trans. Amer. Math. Soc.'' , '''107'''  (1963)  pp. 56–86</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.W. Pitman,  "One-dimensional Brownian motion and the three-dimensional Bessel process"  ''Adv. Applied Probab.'' , '''7'''  (1975)  pp. 511–526</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.W. Pitman,  M. Yor,  "Bessel processes and infinitely divisible laws"  D. Williams (ed.) , ''Stochastic Integrals'' , ''Lecture Notes in Mathematics'' , '''851''' , Springer  (1981)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J.W. Pitman,  M. Yor,  "A decomposition of Bessel bridges"  ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''59'''  (1982)  pp. 425–457</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  D.B. Ray,  "Sojourn times of a diffusion process"  ''Ill. J. Math.'' , '''7'''  (1963)  pp. 615–630</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  T. Shiga,  S. Watanabe,  "Bessel diffusions as a one-parameter family of one-dimensional diffusion processes"  ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''27'''  (1973)  pp. 37–46</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D. Revuz,  M. Yor,  "Continuous martingales and Brownian motion" , Springer  (1994)  (Edition: Second)</TD></TR></table>

Latest revision as of 10:58, 29 May 2020


A family of continuous Markov processes (cf. Markov process) $ ( R _ {t} , t \geq 0 ) $ taking values in $ \mathbf R _ {+} $, parametrized by their dimension $ \delta $.

When $ \delta = d $ is an integer, $ ( R _ {t} ,t \geq 0 ) $ may be represented as the Euclidean norm of Brownian motion in $ \mathbf R ^ {d} $. Let $ Q _ {x} ^ {d} $ be the law of the square, starting from $ x \geq 0 $, of such a process $ ( R _ {t} ,t \geq 0 ) $, considered as a random variable taking values in $ \Omega = C ( \mathbf R _ {+} , \mathbf R _ {+} ) $. This law is infinitely divisible (cf. [a6] and Infinitely-divisible distribution). Hence, there exists a unique family $ ( Q _ {x} ^ \delta ;x \geq 0, \delta \geq 0 ) $ of laws on $ \Omega $ such that

$$ \tag{a1 } Q _ {x} ^ \delta * Q _ {x ^ \prime } ^ {\delta ^ \prime } = Q _ {x + x ^ \prime } ^ {\delta + \delta ^ \prime } \textrm{ for all } \delta, \delta ^ \prime ,x,x ^ \prime \geq 0 $$

( $ * $ indicates the convolution of probabilities on $ \Omega $), which coincides with the family $ ( Q _ {x} ^ {d} ,x \geq 0 ) $, for integer dimensions $ d $.

The process of coordinates $ ( X _ {t} ,t \geq 0 ) $ on $ \Omega $, under $ Q _ {x} ^ \delta $, satisfies the equation

$$ \tag{a2 } X _ {t} = x + 2 \int\limits _ { 0 } ^ { t } {\sqrt {X _ {s} } } {d \beta _ {s} } + \delta t, \quad t \geq 0, $$

with $ ( \beta _ {s} ,s \geq 0 ) $ a one-dimensional Brownian motion. Equation (a2) admits a unique strong solution, with values in $ \mathbf R _ {+} $. Call its square root a $ \delta $- dimensional Bessel process.

Bessel processes also appear naturally in the Lamperti representation of the process $ ( { \mathop{\rm exp} } ( B _ {t} + \nu t ) ,t \geq 0 ) $, where $ \nu \in \mathbf R $ and $ ( B _ {t} ,t \geq 0 ) $ denotes a one-dimensional Brownian motion. This representation is:

$$ \tag{a3 } { \mathop{\rm exp} } ( B _ {t} + \nu t ) = R _ {\int\limits _ { 0 } ^ { t } { { \mathop{\rm exp} } ( 2 ( B _ {s} + \nu s ) ) } {ds } } , t \geq 0, $$

where $ R $ is a $ \delta = 2 ( 1 + \nu ) $- dimensional Bessel process. This representation (a3) has a number of consequences, among which absolute continuity properties of the laws $ Q _ {x} ^ \delta $ as $ \delta $ varies and $ x >0 $ is fixed, and also the fact that a power of a Bessel process is another Bessel process, up to a time-change.

Special representations of Bessel processes of dimensions one and three, respectively, have been obtained by P. Lévy, as $ ( S _ {t} - B _ {t} ,t \geq 0 ) $, and by J. Pitman as $ ( 2S _ {t} - B _ {t} ,t \geq 0 ) $, where $ S _ {t} = \sup _ {s \leq t } B _ {s} $, and $ ( B _ {t} ,t \geq 0 ) $ is a one-dimensional Brownian motion.

Finally, the laws of the local times of $ ( B _ {t} ,t \geq 0 ) $ considered up to first hitting times, or inverse local times, can be expressed in terms of $ Q _ {0} ^ {2} $ and $ Q _ {x} ^ {0} $, respectively: this is the content of the celebrated Ray–Knight theorems (1963; [a1], [a5]) on Brownian local times. These theorems have been extended to a large class of processes, including real-valued diffusions.

References

[a1] F.B. Knight, "Random walks and a sojourn density process of Brownian motion" Trans. Amer. Math. Soc. , 107 (1963) pp. 56–86
[a2] J.W. Pitman, "One-dimensional Brownian motion and the three-dimensional Bessel process" Adv. Applied Probab. , 7 (1975) pp. 511–526
[a3] J.W. Pitman, M. Yor, "Bessel processes and infinitely divisible laws" D. Williams (ed.) , Stochastic Integrals , Lecture Notes in Mathematics , 851 , Springer (1981)
[a4] J.W. Pitman, M. Yor, "A decomposition of Bessel bridges" Z. Wahrscheinlichkeitsth. verw. Gebiete , 59 (1982) pp. 425–457
[a5] D.B. Ray, "Sojourn times of a diffusion process" Ill. J. Math. , 7 (1963) pp. 615–630
[a6] T. Shiga, S. Watanabe, "Bessel diffusions as a one-parameter family of one-dimensional diffusion processes" Z. Wahrscheinlichkeitsth. verw. Gebiete , 27 (1973) pp. 37–46
[a7] D. Revuz, M. Yor, "Continuous martingales and Brownian motion" , Springer (1994) (Edition: Second)
How to Cite This Entry:
Bessel processes. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bessel_processes&oldid=17022
This article was adapted from an original article by M. Yor (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article