Difference between revisions of "Schwarz function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0835301.png | ||
+ | $#A+1 = 35 n = 0 | ||
+ | $#C+1 = 35 : ~/encyclopedia/old_files/data/S083/S.0803530 Schwarz function, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Riemann–Schwarz function'' | ''Riemann–Schwarz function'' | ||
− | An [[Analytic function|analytic function]] realizing a [[Conformal mapping|conformal mapping]] of a triangle bounded by arcs of circles onto the upper half-plane (or unit disc) that remains single-valued under unrestricted [[Analytic continuation|analytic continuation]]. A Schwarz function is an [[Automorphic function|automorphic function]]. The corresponding group depends on the form of the mapped triangle. The requirement of single-valuedness is satisfied only in the case when the angles of the triangle are | + | An [[Analytic function|analytic function]] realizing a [[Conformal mapping|conformal mapping]] of a triangle bounded by arcs of circles onto the upper half-plane (or unit disc) that remains single-valued under unrestricted [[Analytic continuation|analytic continuation]]. A Schwarz function is an [[Automorphic function|automorphic function]]. The corresponding group depends on the form of the mapped triangle. The requirement of single-valuedness is satisfied only in the case when the angles of the triangle are $ \pi / \nu _ {1} $, |
+ | $ \pi / \nu _ {2} $, | ||
+ | $ \pi / \nu _ {3} $, | ||
+ | where $ \nu _ {1} $, | ||
+ | $ \nu _ {2} $ | ||
+ | and $ \nu _ {3} $ | ||
+ | are some specially-chosen natural numbers. | ||
− | If | + | If $ 1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} = 1 $, |
+ | one obtains rectilinear triangles for which the only possibilities are: $ \nu _ {1} = \nu _ {2} = 2 $, | ||
+ | $ \nu _ {3} = \infty $( | ||
+ | a semi-strip); $ \nu _ {1} = 2 $, | ||
+ | $ \nu _ {2} = 3 $, | ||
+ | $ \nu _ {3} = 6 $; | ||
+ | $ \nu _ {1} = 2 $, | ||
+ | $ \nu _ {2} = \nu _ {3} = 4 $; | ||
+ | $ \nu _ {1} = \nu _ {2} = \nu _ {3} = 3 $. | ||
+ | In all these cases the Schwarz functions are represented by [[Trigonometric functions|trigonometric functions]] or [[Weierstrass elliptic functions|Weierstrass elliptic functions]] and are automorphic; their group is the group of motions of the Euclidean plane. | ||
− | If | + | If $ 1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} > 1 $, |
+ | there are the following possibilities: $ \nu _ {1} = \nu _ {2} = 2 $, | ||
+ | $ \nu _ {3} $ | ||
+ | arbitrary; $ \nu _ {1} = 2 $, | ||
+ | $ \nu _ {2} = \nu _ {3} = 3 $; | ||
+ | $ \nu _ {1} = 2 $, | ||
+ | $ \nu _ {2} = 3 $, | ||
+ | $ \nu _ {3} = 4 $; | ||
+ | $ \nu _ {1} = 2 $, | ||
+ | $ \nu _ {2} = 3 $, | ||
+ | $ \nu _ {3} = 5 $. | ||
+ | In all these cases the Schwarz functions are rational automorphic functions; their group is a finite group of motions of a sphere. As a result of the relationship between this group and regular polygons, such Schwarz functions are also called polyhedral functions. | ||
− | Finally, if | + | Finally, if $ 1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} < 1 $, |
+ | then infinitely-many different triangles are possible, since $ \nu _ {1} , \nu _ {2} , \nu _ {3} $ | ||
+ | may increase indefinitely. Here, the Schwarz functions are automorphic functions with a continuous singular curve (circle or straight line). In particular, the cases of $ \nu _ {1} = 2 $, | ||
+ | $ \nu _ {2} = 3 $, | ||
+ | $ \nu _ {3} = \infty $ | ||
+ | and $ \nu _ {1} = \nu _ {2} = \nu _ {3} = \infty $( | ||
+ | a circular triangle with zero angles) lead to the modular functions (cf. [[Modular function|Modular function]]) $ J( z) $ | ||
+ | and $ \lambda ( z) $, | ||
+ | respectively. The Schwarz functions were studied by H.A. Schwarz [[#References|[1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H.A. Schwarz, "Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt (nebst zwei Figurtafeln)" ''J. Reine Angew. Math.'' , '''75''' (1873) pp. 292–335</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.R. Ford, "Automorphic functions" , Chelsea, reprint (1951)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H.A. Schwarz, "Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt (nebst zwei Figurtafeln)" ''J. Reine Angew. Math.'' , '''75''' (1873) pp. 292–335</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.R. Ford, "Automorphic functions" , Chelsea, reprint (1951)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | In the case of a rectilinear triangle the functions are also called Schwarz triangle functions (cf. [[#References|[a1]]], [[#References|[a2]]]) or Schwarzian | + | In the case of a rectilinear triangle the functions are also called Schwarz triangle functions (cf. [[#References|[a1]]], [[#References|[a2]]]) or Schwarzian $ s $- |
+ | functions [[#References|[a3]]]. These functions can be written as the quotient of two independent solutions of a [[Hypergeometric equation|hypergeometric equation]] (with explicit expressions for its coefficients in terms of the triangle angles), cf. [[#References|[a3]]], p. 206. Conformal mapping of circular polygons to a half-plane is also discussed in [[#References|[a3]]] (Chapt. V, Sect. 7). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1979) pp. 241</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C. Carathéodory, "Theory of functions" , '''2''' , Chelsea, reprint (1981) pp. Part 7, Chapts. 2–3</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> Z. Nehari, "Conformal mapping" , Dover, reprint (1975) pp. 2</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1979) pp. 241</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C. Carathéodory, "Theory of functions" , '''2''' , Chelsea, reprint (1981) pp. Part 7, Chapts. 2–3</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> Z. Nehari, "Conformal mapping" , Dover, reprint (1975) pp. 2</TD></TR></table> |
Latest revision as of 08:12, 6 June 2020
Riemann–Schwarz function
An analytic function realizing a conformal mapping of a triangle bounded by arcs of circles onto the upper half-plane (or unit disc) that remains single-valued under unrestricted analytic continuation. A Schwarz function is an automorphic function. The corresponding group depends on the form of the mapped triangle. The requirement of single-valuedness is satisfied only in the case when the angles of the triangle are $ \pi / \nu _ {1} $, $ \pi / \nu _ {2} $, $ \pi / \nu _ {3} $, where $ \nu _ {1} $, $ \nu _ {2} $ and $ \nu _ {3} $ are some specially-chosen natural numbers.
If $ 1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} = 1 $, one obtains rectilinear triangles for which the only possibilities are: $ \nu _ {1} = \nu _ {2} = 2 $, $ \nu _ {3} = \infty $( a semi-strip); $ \nu _ {1} = 2 $, $ \nu _ {2} = 3 $, $ \nu _ {3} = 6 $; $ \nu _ {1} = 2 $, $ \nu _ {2} = \nu _ {3} = 4 $; $ \nu _ {1} = \nu _ {2} = \nu _ {3} = 3 $. In all these cases the Schwarz functions are represented by trigonometric functions or Weierstrass elliptic functions and are automorphic; their group is the group of motions of the Euclidean plane.
If $ 1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} > 1 $, there are the following possibilities: $ \nu _ {1} = \nu _ {2} = 2 $, $ \nu _ {3} $ arbitrary; $ \nu _ {1} = 2 $, $ \nu _ {2} = \nu _ {3} = 3 $; $ \nu _ {1} = 2 $, $ \nu _ {2} = 3 $, $ \nu _ {3} = 4 $; $ \nu _ {1} = 2 $, $ \nu _ {2} = 3 $, $ \nu _ {3} = 5 $. In all these cases the Schwarz functions are rational automorphic functions; their group is a finite group of motions of a sphere. As a result of the relationship between this group and regular polygons, such Schwarz functions are also called polyhedral functions.
Finally, if $ 1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} < 1 $, then infinitely-many different triangles are possible, since $ \nu _ {1} , \nu _ {2} , \nu _ {3} $ may increase indefinitely. Here, the Schwarz functions are automorphic functions with a continuous singular curve (circle or straight line). In particular, the cases of $ \nu _ {1} = 2 $, $ \nu _ {2} = 3 $, $ \nu _ {3} = \infty $ and $ \nu _ {1} = \nu _ {2} = \nu _ {3} = \infty $( a circular triangle with zero angles) lead to the modular functions (cf. Modular function) $ J( z) $ and $ \lambda ( z) $, respectively. The Schwarz functions were studied by H.A. Schwarz [1].
References
[1] | H.A. Schwarz, "Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt (nebst zwei Figurtafeln)" J. Reine Angew. Math. , 75 (1873) pp. 292–335 |
[2] | V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) |
[3] | L.R. Ford, "Automorphic functions" , Chelsea, reprint (1951) |
Comments
In the case of a rectilinear triangle the functions are also called Schwarz triangle functions (cf. [a1], [a2]) or Schwarzian $ s $- functions [a3]. These functions can be written as the quotient of two independent solutions of a hypergeometric equation (with explicit expressions for its coefficients in terms of the triangle angles), cf. [a3], p. 206. Conformal mapping of circular polygons to a half-plane is also discussed in [a3] (Chapt. V, Sect. 7).
References
[a1] | L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1979) pp. 241 |
[a2] | C. Carathéodory, "Theory of functions" , 2 , Chelsea, reprint (1981) pp. Part 7, Chapts. 2–3 |
[a3] | Z. Nehari, "Conformal mapping" , Dover, reprint (1975) pp. 2 |
Schwarz function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schwarz_function&oldid=16946