Difference between revisions of "Integral logarithm"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i0515201.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/I051/I.0501520 Integral logarithm | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | for | + | The special function defined, for positive real $ x $, |
+ | $ x \neq 1 $, | ||
+ | by | ||
− | + | $$ | |
+ | \mathop{\rm li} ( x) = \ | ||
+ | \int\limits _ { 0 } ^ { x } | ||
− | + | \frac{dt}{ \mathop{\rm ln} t } | |
+ | ; | ||
+ | $$ | ||
− | + | for $ x > 1 $ | |
+ | the integrand has at $ t = 1 $ | ||
+ | an infinite discontinuity and the integral logarithm is taken to be the principal value | ||
− | + | $$ | |
+ | \mathop{\rm li} ( x) = \ | ||
+ | \lim\limits _ {\epsilon \downarrow 0 } \ | ||
+ | \left \{ | ||
+ | \int\limits _ { 0 } ^ { {1 } - \epsilon } | ||
− | + | \frac{dt}{ \mathop{\rm ln} t } | |
+ | + | ||
+ | \int\limits _ {1 + \epsilon } ^ { x } | ||
− | + | \frac{dt}{ \mathop{\rm ln} t } | |
− | + | \right \} . | |
+ | $$ | ||
− | + | The graph of the integral logarithm is given in the article [[Integral exponential function|Integral exponential function]]. For $ x $ | |
+ | small: | ||
− | + | $$ | |
+ | \mathop{\rm li} ( x) \approx | ||
+ | \frac{x}{ \mathop{\rm ln} ( 1 / x ) } | ||
+ | . | ||
+ | $$ | ||
− | The integral logarithm | + | The integral logarithm has for positive real $ x $ |
+ | the series representation | ||
− | + | $$ | |
+ | \mathop{\rm li} ( x) = c | ||
+ | + \mathop{\rm ln} | \mathop{\rm ln} x | + | ||
+ | \sum _ { k= } 1 ^ \infty | ||
− | + | \frac{( \mathop{\rm ln} x ) ^ {k} }{k ! k } | |
+ | ,\ \ | ||
+ | k > 0 ,\ \ | ||
+ | x \neq 1 , | ||
+ | $$ | ||
− | + | where $ c = 0.5772 \dots $ | |
+ | is the [[Euler constant|Euler constant]]. As a function of the complex variable $ z $, | ||
− | + | $$ | |
+ | \mathop{\rm li} ( z) = c + | ||
+ | \mathop{\rm ln} ( - \mathop{\rm ln} z ) + | ||
+ | \sum _ { k= } 1 ^ \infty | ||
+ | |||
+ | \frac{( \mathop{\rm ln} z ) ^ {k} }{k ! k } | ||
+ | |||
+ | $$ | ||
+ | |||
+ | is a single-valued analytic function in the complex $ z $- | ||
+ | plane with slits along the real axis from $ - \infty $ | ||
+ | to 0 and from 1 to $ + \infty $( | ||
+ | the imaginary part of the logarithms is taken within the limits $ - \pi $ | ||
+ | and $ \pi $). | ||
+ | The behaviour of $ \mathop{\rm li} x $ | ||
+ | along $ ( 1 , + \infty ) $ | ||
+ | is described by | ||
+ | |||
+ | $$ | ||
+ | \lim\limits _ {\eta \downarrow 0 } \mathop{\rm li} ( x \pm i \eta ) | ||
+ | = \mathop{\rm li} x \mps \pi i ,\ \ | ||
+ | x > 1 . | ||
+ | $$ | ||
+ | |||
+ | The integral logarithm is related to the [[Integral exponential function|integral exponential function]] $ \mathop{\rm Ei} ( x) $ | ||
+ | by | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm li} ( x) = \ | ||
+ | \mathop{\rm Ei} ( \mathop{\rm ln} x ) ,\ \ | ||
+ | x < 1 ; \ \ | ||
+ | \mathop{\rm Ei} ( x) = \ | ||
+ | \mathop{\rm li} ( e ^ {x} ) ,\ \ | ||
+ | x < 0 . | ||
+ | $$ | ||
+ | |||
+ | For real $ x > 0 $ | ||
+ | one sometimes uses the notation | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm Li} ( x) = \ | ||
+ | \left \{ | ||
+ | \begin{array}{ll} | ||
+ | \mathop{\rm li} ( x) = \mathop{\rm Ei} ( \mathop{\rm ln} x ) &\textrm{ for } 0 < x < 1 , \\ | ||
+ | \mathop{\rm li} ( x) + \pi i = \mathop{\rm Ei} ^ {*} ( \mathop{\rm ln} x ) &\textrm{ for } x > 1 . \\ | ||
+ | \end{array} | ||
+ | \right .$$ | ||
+ | For references, see [[Integral cosine|Integral cosine]]. | ||
====Comments==== | ====Comments==== | ||
− | The function | + | The function $ \mathop{\rm li} $ |
+ | is better known as the logarithmic integral. It can, of course, be defined by the integral (as above) for $ z \in \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 \textrm{ or } x \geq 1 } \} $. | ||
− | The series representation for positive | + | The series representation for positive $ x $, |
+ | $ x \neq 1 $, | ||
+ | is then also said to define the modified logarithmic integral, and is the boundary value of $ \mathop{\rm li} ( x + i \eta ) \pm \pi i $, | ||
+ | $ x > 1 $, | ||
+ | $ \eta \rightarrow 0 $. | ||
+ | For real $ x > 1 $ | ||
+ | the value $ \mathop{\rm li} ( x) $ | ||
+ | is a good approximation of $ \pi ( x) $, | ||
+ | the number of primes smaller than $ x $( | ||
+ | see [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]; [[Distribution of prime numbers|Distribution of prime numbers]]; [[Prime number|Prime number]]). |
Revision as of 22:12, 5 June 2020
The special function defined, for positive real $ x $,
$ x \neq 1 $,
by
$$ \mathop{\rm li} ( x) = \ \int\limits _ { 0 } ^ { x } \frac{dt}{ \mathop{\rm ln} t } ; $$
for $ x > 1 $ the integrand has at $ t = 1 $ an infinite discontinuity and the integral logarithm is taken to be the principal value
$$ \mathop{\rm li} ( x) = \ \lim\limits _ {\epsilon \downarrow 0 } \ \left \{ \int\limits _ { 0 } ^ { {1 } - \epsilon } \frac{dt}{ \mathop{\rm ln} t } + \int\limits _ {1 + \epsilon } ^ { x } \frac{dt}{ \mathop{\rm ln} t } \right \} . $$
The graph of the integral logarithm is given in the article Integral exponential function. For $ x $ small:
$$ \mathop{\rm li} ( x) \approx \frac{x}{ \mathop{\rm ln} ( 1 / x ) } . $$
The integral logarithm has for positive real $ x $ the series representation
$$ \mathop{\rm li} ( x) = c + \mathop{\rm ln} | \mathop{\rm ln} x | + \sum _ { k= } 1 ^ \infty \frac{( \mathop{\rm ln} x ) ^ {k} }{k ! k } ,\ \ k > 0 ,\ \ x \neq 1 , $$
where $ c = 0.5772 \dots $ is the Euler constant. As a function of the complex variable $ z $,
$$ \mathop{\rm li} ( z) = c + \mathop{\rm ln} ( - \mathop{\rm ln} z ) + \sum _ { k= } 1 ^ \infty \frac{( \mathop{\rm ln} z ) ^ {k} }{k ! k } $$
is a single-valued analytic function in the complex $ z $- plane with slits along the real axis from $ - \infty $ to 0 and from 1 to $ + \infty $( the imaginary part of the logarithms is taken within the limits $ - \pi $ and $ \pi $). The behaviour of $ \mathop{\rm li} x $ along $ ( 1 , + \infty ) $ is described by
$$ \lim\limits _ {\eta \downarrow 0 } \mathop{\rm li} ( x \pm i \eta ) = \mathop{\rm li} x \mps \pi i ,\ \ x > 1 . $$
The integral logarithm is related to the integral exponential function $ \mathop{\rm Ei} ( x) $ by
$$ \mathop{\rm li} ( x) = \ \mathop{\rm Ei} ( \mathop{\rm ln} x ) ,\ \ x < 1 ; \ \ \mathop{\rm Ei} ( x) = \ \mathop{\rm li} ( e ^ {x} ) ,\ \ x < 0 . $$
For real $ x > 0 $ one sometimes uses the notation
$$ \mathop{\rm Li} ( x) = \ \left \{ \begin{array}{ll} \mathop{\rm li} ( x) = \mathop{\rm Ei} ( \mathop{\rm ln} x ) &\textrm{ for } 0 < x < 1 , \\ \mathop{\rm li} ( x) + \pi i = \mathop{\rm Ei} ^ {*} ( \mathop{\rm ln} x ) &\textrm{ for } x > 1 . \\ \end{array} \right .$$
For references, see Integral cosine.
Comments
The function $ \mathop{\rm li} $ is better known as the logarithmic integral. It can, of course, be defined by the integral (as above) for $ z \in \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 \textrm{ or } x \geq 1 } \} $.
The series representation for positive $ x $, $ x \neq 1 $, is then also said to define the modified logarithmic integral, and is the boundary value of $ \mathop{\rm li} ( x + i \eta ) \pm \pi i $, $ x > 1 $, $ \eta \rightarrow 0 $. For real $ x > 1 $ the value $ \mathop{\rm li} ( x) $ is a good approximation of $ \pi ( x) $, the number of primes smaller than $ x $( see de la Vallée-Poussin theorem; Distribution of prime numbers; Prime number).
Integral logarithm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_logarithm&oldid=16849