Difference between revisions of "Determinant variety"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0314201.png | ||
+ | $#A+1 = 31 n = 0 | ||
+ | $#C+1 = 31 : ~/encyclopedia/old_files/data/D031/D.0301420 Determinant variety | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The set of matrices $ D _ {t} ( d , n ) $ | |
+ | of dimension $ d \times n $ | ||
+ | and of a rank lower than $ t $, | ||
+ | with the structure of an algebraic variety. Let $ J _ {t} ( d , n ) $ | ||
+ | be the ideal in the ring of polynomials | ||
− | + | $$ | |
+ | k \left [ ( T _ {ij} ) _ {\begin{array} {l} | ||
+ | 1 \leq i \leq d | ||
+ | \\ | ||
+ | 1 \leq j\leq n | ||
+ | \end{array} | ||
+ | } \right ] , | ||
+ | $$ | ||
− | + | with coefficients in a field $ k $, | |
+ | generated by the $ t $- | ||
+ | order minors of the matrix of dimension $ d \times n $ | ||
+ | constituted by the variables $ T _ {ij} $( | ||
+ | a determinant ideal). The set of zeros of the ideal $ J _ {t} ( d , n ) $ | ||
+ | in the affine space $ A ^ {dn} = { \mathop{\rm Spec} } ( k [ ( T _ {ij} ) ] ) $ | ||
+ | is known as the determinant variety and is denoted by $ D _ {t} ( d , n ) $. | ||
+ | For any commutative $ k $- | ||
+ | algebra $ k ^ \prime $ | ||
+ | the set of $ k ^ \prime $- | ||
+ | points of the determinant variety $ D _ {t} ( d , n ) $ | ||
+ | coincides, in a natural manner, with the set of matrices of dimension $ d \times n $ | ||
+ | and rank $ < t $ | ||
+ | with coefficients in $ k ^ \prime $. | ||
+ | |||
+ | The following are special cases of determinant varieties: $ D _ {d} ( d , n ) $ | ||
+ | is the hypersurface in $ A ^ {d ^ {2} } $ | ||
+ | defined by the vanishing of the determinant of a square matrix of dimension $ d $ | ||
+ | consisting of independent variables (a determinant hypersurface); $ D _ {2} ( d , n ) $ | ||
+ | is an affine cone for the image of the Segre imbedding | ||
+ | |||
+ | $$ | ||
+ | P ^ {d-} 1 \times P ^ {n-} 1 \rightarrow P ^ {dn-} 1 | ||
+ | $$ | ||
of the product of projective spaces [[#References|[2]]]. | of the product of projective spaces [[#References|[2]]]. | ||
− | Determinant varieties have the following properties: | + | Determinant varieties have the following properties: $ D _ {t} ( d , n ) $ |
+ | is irreducible, reduced (i.e. the ideal $ J _ {t} ( d , n ) $ | ||
+ | is simple), is a Cohen–Macaulay variety (cf. [[Cohen–Macaulay ring|Cohen–Macaulay ring]]), is normal, and the dimension of $ D _ {t} ( d , n ) $ | ||
+ | is equal to $ ( t - 1 ) ( n + d - 1 ) $[[#References|[1]]], [[#References|[2]]]. $ D _ {t} ( d , n ) $ | ||
+ | is a Gorenstein scheme if and only if $ t = 1 $ | ||
+ | or $ d = n $( | ||
+ | cf. [[Gorenstein ring|Gorenstein ring]]) [[#References|[5]]]. Determinant varieties are closely connected with Schubert varieties of a Grassmann manifold (cf. [[Schubert variety|Schubert variety]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Hochster, J. Eagon, "Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci" ''Amer. J. Math.'' , '''93''' : 4 (1971) pp. 1020–1058</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Kleiman, J. Landolfi, "Geometry and deformation of special Schubert varieties" ''Compositio Math.'' , '''23''' (1971) pp. 407–434</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Laksov, "Deformation of determinantal schemes" ''Compositio Math.'' , '''30''' (1975) pp. 273–292</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> C. Musili, "Some properties of Schubert varieties" ''J. Indian Math. Soc.'' , '''38''' (1974) pp. 131–145</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> T. Svanes, "Coherent cohomology on Schubert subschemes of flag schemes and applications" ''Adv. in Math.'' , '''14''' (1974) pp. 369–453</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Hochster, J. Eagon, "Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci" ''Amer. J. Math.'' , '''93''' : 4 (1971) pp. 1020–1058</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Kleiman, J. Landolfi, "Geometry and deformation of special Schubert varieties" ''Compositio Math.'' , '''23''' (1971) pp. 407–434</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Laksov, "Deformation of determinantal schemes" ''Compositio Math.'' , '''30''' (1975) pp. 273–292</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> C. Musili, "Some properties of Schubert varieties" ''J. Indian Math. Soc.'' , '''38''' (1974) pp. 131–145</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> T. Svanes, "Coherent cohomology on Schubert subschemes of flag schemes and applications" ''Adv. in Math.'' , '''14''' (1974) pp. 369–453</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 17:33, 5 June 2020
The set of matrices $ D _ {t} ( d , n ) $
of dimension $ d \times n $
and of a rank lower than $ t $,
with the structure of an algebraic variety. Let $ J _ {t} ( d , n ) $
be the ideal in the ring of polynomials
$$ k \left [ ( T _ {ij} ) _ {\begin{array} {l} 1 \leq i \leq d \\ 1 \leq j\leq n \end{array} } \right ] , $$
with coefficients in a field $ k $, generated by the $ t $- order minors of the matrix of dimension $ d \times n $ constituted by the variables $ T _ {ij} $( a determinant ideal). The set of zeros of the ideal $ J _ {t} ( d , n ) $ in the affine space $ A ^ {dn} = { \mathop{\rm Spec} } ( k [ ( T _ {ij} ) ] ) $ is known as the determinant variety and is denoted by $ D _ {t} ( d , n ) $. For any commutative $ k $- algebra $ k ^ \prime $ the set of $ k ^ \prime $- points of the determinant variety $ D _ {t} ( d , n ) $ coincides, in a natural manner, with the set of matrices of dimension $ d \times n $ and rank $ < t $ with coefficients in $ k ^ \prime $.
The following are special cases of determinant varieties: $ D _ {d} ( d , n ) $ is the hypersurface in $ A ^ {d ^ {2} } $ defined by the vanishing of the determinant of a square matrix of dimension $ d $ consisting of independent variables (a determinant hypersurface); $ D _ {2} ( d , n ) $ is an affine cone for the image of the Segre imbedding
$$ P ^ {d-} 1 \times P ^ {n-} 1 \rightarrow P ^ {dn-} 1 $$
of the product of projective spaces [2].
Determinant varieties have the following properties: $ D _ {t} ( d , n ) $ is irreducible, reduced (i.e. the ideal $ J _ {t} ( d , n ) $ is simple), is a Cohen–Macaulay variety (cf. Cohen–Macaulay ring), is normal, and the dimension of $ D _ {t} ( d , n ) $ is equal to $ ( t - 1 ) ( n + d - 1 ) $[1], [2]. $ D _ {t} ( d , n ) $ is a Gorenstein scheme if and only if $ t = 1 $ or $ d = n $( cf. Gorenstein ring) [5]. Determinant varieties are closely connected with Schubert varieties of a Grassmann manifold (cf. Schubert variety).
References
[1] | M. Hochster, J. Eagon, "Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci" Amer. J. Math. , 93 : 4 (1971) pp. 1020–1058 |
[2] | S. Kleiman, J. Landolfi, "Geometry and deformation of special Schubert varieties" Compositio Math. , 23 (1971) pp. 407–434 |
[3] | D. Laksov, "Deformation of determinantal schemes" Compositio Math. , 30 (1975) pp. 273–292 |
[4] | C. Musili, "Some properties of Schubert varieties" J. Indian Math. Soc. , 38 (1974) pp. 131–145 |
[5] | T. Svanes, "Coherent cohomology on Schubert subschemes of flag schemes and applications" Adv. in Math. , 14 (1974) pp. 369–453 |
Comments
Many geometrical properties of determinant varieties can be found in [a1]. Instead of determinant variety, etc. one also speaks of determinantal variety, etc.
References
[a1] | T.G. Room, "Geometry of determinantal loci" , Cambridge Univ. Press (1938) |
Determinant variety. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Determinant_variety&oldid=16799