Difference between revisions of "Intertwining operator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i0520601.png | ||
+ | $#A+1 = 39 n = 0 | ||
+ | $#C+1 = 39 : ~/encyclopedia/old_files/data/I052/I.0502060 Intertwining operator | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | A continuous linear operator $ T: E _ {1} \rightarrow E _ {2} $ | ||
+ | such that $ T \pi _ {1} ( x) = \pi _ {2} ( x) T $, | ||
+ | where $ \pi _ {1} $ | ||
+ | and $ \pi _ {2} $ | ||
+ | are mappings of a set $ X $ | ||
+ | into two topological vector spaces $ E _ {1} $ | ||
+ | and $ E _ {2} $ | ||
+ | and $ x \in X $. | ||
+ | This concept is especially fruitful in the case when $ X $ | ||
+ | is a group or an algebra and $ \pi _ {1} , \pi _ {2} $ | ||
+ | are representations of $ X $. | ||
+ | The set of intertwining operators forms the space $ \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) $, | ||
+ | which is a subspace of the space of all continuous linear mappings from $ E _ {1} $ | ||
+ | to $ E _ {2} $. | ||
+ | If $ \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) = ( 0) $ | ||
+ | and $ \mathop{\rm Hom} ( \pi _ {2} , \pi _ {1} ) = ( 0) $, | ||
+ | then $ \pi _ {1} $ | ||
+ | and $ \pi _ {2} $ | ||
+ | are called disjoint representations. If $ \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) $ | ||
+ | contains an operator that defines an isomorphism of $ E _ {1} $ | ||
+ | and $ E _ {2} $, | ||
+ | then $ \pi _ {1} $ | ||
+ | and $ \pi _ {2} $ | ||
+ | are equivalent. If $ E _ {1} , E _ {2} $ | ||
+ | are locally convex spaces, if $ E _ {1} ^ {*} $ | ||
+ | and $ E _ {2} ^ {*} $ | ||
+ | are their adjoints, and if $ \pi _ {1} ^ {*} $ | ||
+ | and $ \pi _ {2} ^ {*} $ | ||
+ | are the representations contragredient to $ \pi _ {1} $ | ||
+ | and $ \pi _ {2} $, | ||
+ | respectively (cf. [[Contragredient representation|Contragredient representation]]), then for any $ T \in \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) $, | ||
+ | the operator $ T ^ {*} $ | ||
+ | is contained in $ \mathop{\rm Hom} ( \pi _ {2} ^ {*} , \pi _ {1} ^ {*} ) $. | ||
+ | If $ \pi _ {1} $ | ||
+ | and $ \pi _ {2} $ | ||
+ | are finite-dimensional or unitary representations and $ \pi _ {1} $ | ||
+ | is irreducible, then $ \pi _ {2} $ | ||
+ | admits a subrepresentation equivalent to $ \pi _ {1} $ | ||
+ | if and only if $ \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) \neq ( 0) $. | ||
+ | See also [[Intertwining number|Intertwining number]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Shtern, "Theory of group representations" , Springer (1982) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Shtern, "Theory of group representations" , Springer (1982) (Translated from Russian)</TD></TR></table> |
Latest revision as of 22:13, 5 June 2020
A continuous linear operator $ T: E _ {1} \rightarrow E _ {2} $
such that $ T \pi _ {1} ( x) = \pi _ {2} ( x) T $,
where $ \pi _ {1} $
and $ \pi _ {2} $
are mappings of a set $ X $
into two topological vector spaces $ E _ {1} $
and $ E _ {2} $
and $ x \in X $.
This concept is especially fruitful in the case when $ X $
is a group or an algebra and $ \pi _ {1} , \pi _ {2} $
are representations of $ X $.
The set of intertwining operators forms the space $ \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) $,
which is a subspace of the space of all continuous linear mappings from $ E _ {1} $
to $ E _ {2} $.
If $ \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) = ( 0) $
and $ \mathop{\rm Hom} ( \pi _ {2} , \pi _ {1} ) = ( 0) $,
then $ \pi _ {1} $
and $ \pi _ {2} $
are called disjoint representations. If $ \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) $
contains an operator that defines an isomorphism of $ E _ {1} $
and $ E _ {2} $,
then $ \pi _ {1} $
and $ \pi _ {2} $
are equivalent. If $ E _ {1} , E _ {2} $
are locally convex spaces, if $ E _ {1} ^ {*} $
and $ E _ {2} ^ {*} $
are their adjoints, and if $ \pi _ {1} ^ {*} $
and $ \pi _ {2} ^ {*} $
are the representations contragredient to $ \pi _ {1} $
and $ \pi _ {2} $,
respectively (cf. Contragredient representation), then for any $ T \in \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) $,
the operator $ T ^ {*} $
is contained in $ \mathop{\rm Hom} ( \pi _ {2} ^ {*} , \pi _ {1} ^ {*} ) $.
If $ \pi _ {1} $
and $ \pi _ {2} $
are finite-dimensional or unitary representations and $ \pi _ {1} $
is irreducible, then $ \pi _ {2} $
admits a subrepresentation equivalent to $ \pi _ {1} $
if and only if $ \mathop{\rm Hom} ( \pi _ {1} , \pi _ {2} ) \neq ( 0) $.
See also Intertwining number.
References
[1] | A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian) |
[2] | A.I. Shtern, "Theory of group representations" , Springer (1982) (Translated from Russian) |
Intertwining operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Intertwining_operator&oldid=16668