Difference between revisions of "Privalov operators"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | p0748501.png | ||
| + | $#A+1 = 39 n = 0 | ||
| + | $#C+1 = 39 : ~/encyclopedia/old_files/data/P074/P.0704850 Privalov operators, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''Privalov parameters'' | ''Privalov parameters'' | ||
| − | Operators that allow one to express the condition of harmonicity of a function without using partial derivatives (cf. [[Harmonic function|Harmonic function]]). Let | + | Operators that allow one to express the condition of harmonicity of a function without using partial derivatives (cf. [[Harmonic function|Harmonic function]]). Let $ u $ |
| + | be a locally integrable function in a bounded domain $ D $ | ||
| + | of a Euclidean space $ \mathbf R ^ {n} $, | ||
| + | $ n \geq 2 $; | ||
| + | let $ \omega ( h) $ | ||
| + | denote the volume of the ball $ B ( x; h) $ | ||
| + | of radius $ h $ | ||
| + | with centre $ x \in D $, | ||
| + | lying in $ D $; | ||
| + | and let | ||
| − | + | $$ | |
| + | \Delta _ {h} u ( x) = \ | ||
| + | { | ||
| + | \frac{1}{\omega ( h) } | ||
| + | } | ||
| + | \int\limits _ {B ( x; h) } | ||
| + | u ( y) dy - u ( x). | ||
| + | $$ | ||
| − | The upper and lower Privalov operators | + | The upper and lower Privalov operators $ \overline \Delta \; {} ^ {*} u ( x) $ |
| + | and $ \underline \Delta ^ {*} u ( x) $ | ||
| + | are defined, respectively, by the formulas | ||
| − | + | $$ | |
| + | \overline \Delta \; {} ^ {*} u ( x) = \ | ||
| + | \overline{\lim\limits}\; _ {h \rightarrow 0 } 2( n+ | ||
| + | \frac{2)}{h ^ {2} } | ||
| − | + | \Delta _ {h} u( x) , | |
| + | $$ | ||
| − | + | $$ | |
| + | \underline \Delta ^ {*} u ( x) = \lim\limits _ {\overline{ {h \rightarrow 0 }}\; } 2( n+ | ||
| + | \frac{2)}{h ^ {2} } | ||
| + | \Delta _ {h} u( x) . | ||
| + | $$ | ||
| − | + | If the upper and lower Privalov operators coincide, then the Privalov operator $ \Delta ^ {*} u ( x) $ | |
| + | is defined by | ||
| − | + | $$ | |
| + | \Delta ^ {*} u ( x) = \ | ||
| + | \overline \Delta \; {} ^ {*} u ( x) = \ | ||
| + | \underline \Delta ^ {*} u ( x) = \ | ||
| + | \lim\limits _ {h \rightarrow 0 } | ||
| + | 2( n+ | ||
| + | \frac{2)}{h ^ {2} } | ||
| + | \Delta _ {h} u( x) . | ||
| + | $$ | ||
| − | + | If the function $ u $ | |
| + | has continuous partial derivatives up to and including the second order at $ x \in D $, | ||
| + | then the Privalov operator $ \Delta ^ {*} u( x) $ | ||
| + | exists at $ x $ | ||
| + | and is equal to the value of the [[Laplace operator|Laplace operator]]: $ \Delta ^ {*} u ( x) = \Delta u ( x) $. | ||
| + | Privalov's theorem says: If a function $ u $, | ||
| + | continuous in a domain $ D $, | ||
| + | satisfies everywhere in $ D $ | ||
| + | the conditions | ||
| − | + | $$ | |
| + | \underline \Delta ^ {*} u ( x) \leq \ | ||
| + | 0 \leq \overline \Delta \; {} ^ {*} u ( x), | ||
| + | $$ | ||
| − | + | then $ u $ | |
| + | is harmonic in $ D $. | ||
| + | This implies that a function $ u $, | ||
| + | continuous in $ D $, | ||
| + | is harmonic if and only if at every point $ x \in D $ | ||
| + | one has $ \Delta _ {h} u ( x) = 0 $, | ||
| + | from some sufficiently small $ h $ | ||
| + | onwards, or, in other words, if and only if | ||
| + | |||
| + | $$ | ||
| + | u ( x) = \ | ||
| + | { | ||
| + | \frac{1}{\omega ( h) } | ||
| + | } | ||
| + | \int\limits _ {B ( x; h) } | ||
| + | u ( y) dy. | ||
| + | $$ | ||
The average value over the volume of a sphere can be replaced by that over the surface area. | The average value over the volume of a sphere can be replaced by that over the surface area. | ||
| Line 27: | Line 101: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.I. Privalov, ''Mat. Sb.'' , '''32''' (1925) pp. 464–471</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. Privalov, "Subharmonic functions" , Moscow-Leningrad (1937) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1969)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.I. Privalov, ''Mat. Sb.'' , '''32''' (1925) pp. 464–471</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. Privalov, "Subharmonic functions" , Moscow-Leningrad (1937) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1969)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | More generally, if | + | More generally, if $ u > - \infty $ |
| + | is lower semi-continuous, then $ u $ | ||
| + | is hyperharmonic if and only if $ \underline \Delta ^ {*} u \leq 0 $ | ||
| + | on $ \{ u < \infty \} $( | ||
| + | the theorem of Blaschke–Privalov). | ||
| − | Similar results hold if the average value over the surface area is used for the operators and | + | Similar results hold if the average value over the surface area is used for the operators and $ 2( n+ 2) $ |
| + | is replaced by $ 2n $. | ||
Latest revision as of 08:07, 6 June 2020
Privalov parameters
Operators that allow one to express the condition of harmonicity of a function without using partial derivatives (cf. Harmonic function). Let $ u $ be a locally integrable function in a bounded domain $ D $ of a Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $; let $ \omega ( h) $ denote the volume of the ball $ B ( x; h) $ of radius $ h $ with centre $ x \in D $, lying in $ D $; and let
$$ \Delta _ {h} u ( x) = \ { \frac{1}{\omega ( h) } } \int\limits _ {B ( x; h) } u ( y) dy - u ( x). $$
The upper and lower Privalov operators $ \overline \Delta \; {} ^ {*} u ( x) $ and $ \underline \Delta ^ {*} u ( x) $ are defined, respectively, by the formulas
$$ \overline \Delta \; {} ^ {*} u ( x) = \ \overline{\lim\limits}\; _ {h \rightarrow 0 } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) , $$
$$ \underline \Delta ^ {*} u ( x) = \lim\limits _ {\overline{ {h \rightarrow 0 }}\; } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) . $$
If the upper and lower Privalov operators coincide, then the Privalov operator $ \Delta ^ {*} u ( x) $ is defined by
$$ \Delta ^ {*} u ( x) = \ \overline \Delta \; {} ^ {*} u ( x) = \ \underline \Delta ^ {*} u ( x) = \ \lim\limits _ {h \rightarrow 0 } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) . $$
If the function $ u $ has continuous partial derivatives up to and including the second order at $ x \in D $, then the Privalov operator $ \Delta ^ {*} u( x) $ exists at $ x $ and is equal to the value of the Laplace operator: $ \Delta ^ {*} u ( x) = \Delta u ( x) $. Privalov's theorem says: If a function $ u $, continuous in a domain $ D $, satisfies everywhere in $ D $ the conditions
$$ \underline \Delta ^ {*} u ( x) \leq \ 0 \leq \overline \Delta \; {} ^ {*} u ( x), $$
then $ u $ is harmonic in $ D $. This implies that a function $ u $, continuous in $ D $, is harmonic if and only if at every point $ x \in D $ one has $ \Delta _ {h} u ( x) = 0 $, from some sufficiently small $ h $ onwards, or, in other words, if and only if
$$ u ( x) = \ { \frac{1}{\omega ( h) } } \int\limits _ {B ( x; h) } u ( y) dy. $$
The average value over the volume of a sphere can be replaced by that over the surface area.
References
| [1] | I.I. Privalov, Mat. Sb. , 32 (1925) pp. 464–471 |
| [2] | I.I. Privalov, "Subharmonic functions" , Moscow-Leningrad (1937) (In Russian) |
| [3] | M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1969) |
Comments
More generally, if $ u > - \infty $ is lower semi-continuous, then $ u $ is hyperharmonic if and only if $ \underline \Delta ^ {*} u \leq 0 $ on $ \{ u < \infty \} $( the theorem of Blaschke–Privalov).
Similar results hold if the average value over the surface area is used for the operators and $ 2( n+ 2) $ is replaced by $ 2n $.
Privalov operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Privalov_operators&oldid=16543