|
|
Line 1: |
Line 1: |
− | The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d0311701.png" /> of partitions of an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d0311702.png" /> into parts equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d0311703.png" />, i.e. the number of solutions in non-negative integers of the equation | + | The number $D(n; a_1,\ldots,a_k)$ of partitions of an integer $n$ into parts equal to $a_1,\ldots,a_m$, i.e. the number of solutions in non-negative integers $x_1,\ldots,x_m$ of the equation |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d0311704.png" /></td> </tr></table>
| + | n = a_1 x_1 + \cdots + a_m x_m \ . |
− | | + | $$ |
| The generating function of the denumerants is | | The generating function of the denumerants is |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d0311705.png" /></td> </tr></table>
| + | D(z; a_1,\ldots,a_m) = \sum_n D(n;a_1,\ldots,a_m) z^n = \frac{1}{\left({1-z^{a_1}}\right)\cdots\left({1-z^{a_m}}\right)} \ . |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d0311706.png" /></td> </tr></table>
| |
| | | |
| The simplest method of computing a denumerant is by Euler's recurrence relation: | | The simplest method of computing a denumerant is by Euler's recurrence relation: |
| + | $$ |
| + | D(n;1,\ldots,k) - D(n-k;1,\ldots,k) = D(n;1,\ldots,k-1) \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d0311707.png" /></td> </tr></table>
| + | Explicit formulas for certain denumerants may be obtained from the following theorem: If $A$ is the least common multiple of the numbers $a_1,\ldots,a_m$, then the denumerant |
| + | $$ |
| + | D(An+b;a_1,\ldots,a_m) \ ;\ \ b=0,\ldots,A-1 |
| + | $$ |
| + | is a polynomial of degree $(m-1)$ with respect to $n$. |
| | | |
− | Explicit formulas for certain denumerants may be obtained from the following theorem: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d0311708.png" /> is the least common multiple of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d0311709.png" />, then the denumerant
| + | ====References==== |
− | | + | <table> |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d03117010.png" /></td> </tr></table> | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> J. Riordan, "An introduction to combinational analysis" , Wiley (1958)</TD></TR> |
− | | + | </table> |
− | is a polynomial of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d03117011.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031170/d03117012.png" />.
| |
| | | |
− | ====References====
| + | {{TEX|done}} |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Riordan, "An introduction to combinational analysis" , Wiley (1958)</TD></TR></table>
| |
Revision as of 19:42, 9 October 2016
The number $D(n; a_1,\ldots,a_k)$ of partitions of an integer $n$ into parts equal to $a_1,\ldots,a_m$, i.e. the number of solutions in non-negative integers $x_1,\ldots,x_m$ of the equation
$$
n = a_1 x_1 + \cdots + a_m x_m \ .
$$
The generating function of the denumerants is
$$
D(z; a_1,\ldots,a_m) = \sum_n D(n;a_1,\ldots,a_m) z^n = \frac{1}{\left({1-z^{a_1}}\right)\cdots\left({1-z^{a_m}}\right)} \ .
$$
The simplest method of computing a denumerant is by Euler's recurrence relation:
$$
D(n;1,\ldots,k) - D(n-k;1,\ldots,k) = D(n;1,\ldots,k-1) \ .
$$
Explicit formulas for certain denumerants may be obtained from the following theorem: If $A$ is the least common multiple of the numbers $a_1,\ldots,a_m$, then the denumerant
$$
D(An+b;a_1,\ldots,a_m) \ ;\ \ b=0,\ldots,A-1
$$
is a polynomial of degree $(m-1)$ with respect to $n$.
References
[1] | J. Riordan, "An introduction to combinational analysis" , Wiley (1958) |
How to Cite This Entry:
Denumerant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Denumerant&oldid=16405
This article was adapted from an original article by V.E. Tarakanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article