Difference between revisions of "Nuclear bilinear form"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | n0678201.png | ||
+ | $#A+1 = 37 n = 0 | ||
+ | $#C+1 = 37 : ~/encyclopedia/old_files/data/N067/N.0607820 Nuclear bilinear form | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Bilinear form|bilinear form]] $ B ( f , g) $ | |
+ | on the Cartesian product $ F \times G $ | ||
+ | of two locally convex spaces $ F $ | ||
+ | and $ G $ | ||
+ | that can be represented as | ||
− | + | $$ | |
+ | B ( f, g) = \ | ||
+ | \sum _ {i = 1 } ^ \infty | ||
+ | \lambda _ {i} \langle f, f _ {i} ^ { \prime } \rangle \langle g, g _ {i} ^ \prime \rangle, | ||
+ | $$ | ||
− | + | where $ \{ \lambda _ {i} \} $ | |
+ | is a summable sequence, $ \{ f _ {i} ^ { \prime } \} $ | ||
+ | and $ \{ g _ {i} ^ \prime \} $ | ||
+ | are equicontinuous sequences (cf. [[Equicontinuity|Equicontinuity]]) in the dual spaces $ F ^ { \prime } $ | ||
+ | and $ G ^ \prime $ | ||
+ | of $ F $ | ||
+ | and $ G $, | ||
+ | respectively, and $ \langle a, a ^ \prime \rangle $ | ||
+ | denotes the value of the linear functional $ a ^ \prime $ | ||
+ | on the vector $ a $. | ||
+ | All nuclear bilinear forms are continuous. If $ F $ | ||
+ | is a [[Nuclear space|nuclear space]], then for any locally convex space $ G $ | ||
+ | all continuous bilinear forms on $ F \times G $ | ||
+ | are nuclear (the kernel theorem). This result is due to A. Grothendieck [[#References|[1]]]; the form stated is given in [[#References|[2]]]; for other statements see [[#References|[3]]]. The converse holds: If a space $ F $ | ||
+ | satisfies the kernel theorem, then it is a nuclear space. | ||
− | + | For spaces of smooth functions of compact support, the kernel theorem was first obtained by L. Schwartz [[#References|[4]]]. Let $ D $ | |
+ | be the nuclear space of all infinitely-differentiable functions with compact support on the real line, equipped with the standard locally convex topology of Schwartz, so that the dual space $ D ^ \prime $ | ||
+ | consists of all generalized functions on the line. In the special case when $ F = G = D $, | ||
+ | the kernel theorem is equivalent to the following assertion: Every continuous bilinear functional on $ D \times D $ | ||
+ | has the form | ||
− | + | $$ | |
+ | B ( f, g) = \langle f ( t _ {1} ) g ( t _ {2} ), F \rangle = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \int\limits _ {- \infty } ^ \infty F ( t _ {1} , t _ {2} ) f | ||
+ | ( t _ {1} ) g ( t _ {2} ) dt _ {1} dt _ {2} , | ||
+ | $$ | ||
− | + | where $ f ( t), g ( t) \in D $ | |
+ | and $ F = F ( t _ {1} , t _ {2} ) $ | ||
+ | is a generalized function in two variables. There are similar statements of the kernel theorem for spaces of smooth functions in several variables with compact support, for spaces of rapidly-decreasing functions, and for other specific nuclear spaces. Similar results are valid for multilinear forms. | ||
− | + | A continuous bilinear form $ B ( f, g) $ | |
+ | on $ D \times D $ | ||
+ | can be identified with a continuous linear operator $ A: D \rightarrow D ^ \prime $ | ||
+ | by using the equality | ||
− | + | $$ | |
+ | B ( f, g) = \langle g, Af \rangle, | ||
+ | $$ | ||
− | for all | + | and this leads to Schwartz' kernel theorem: For any continuous linear mapping $ A: D \rightarrow D ^ \prime $ |
+ | there is a unique generalized function $ F ( t _ {1} , t _ {2} ) $ | ||
+ | such that | ||
+ | |||
+ | $$ | ||
+ | A: f ( t _ {1} ) \mapsto \int\limits _ {- \infty } ^ \infty | ||
+ | F ( t _ {1} , t _ {2} ) f ( t _ {2} ) dt _ {2} $$ | ||
+ | |||
+ | for all $ f \in D $. | ||
+ | In other words, $ A $ | ||
+ | is an integral operator with kernel $ F $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Produits tensoriels topologiques et espaces nucléaires" , Amer. Math. Soc. (1955)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Pietsch, "Nuclear locally convex spaces" , Springer (1972) (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.M. Gel'fand, N.Ya. Vilenkin, "Generalized functions. Applications of harmonic analysis" , '''4''' , Acad. Press (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L. Schwartz, "Théorie des noyaux" , ''Proc. Internat. Congress Mathematicians (Cambridge, 1950)'' , '''1''' , Amer. Math. Soc. (1952) pp. 220–230</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> L. Schwartz, "Espaces de fonctions différentielles à valeurs vectorielles" ''J. d'Anal. Math.'' , '''4''' (1954–1955) pp. 88–148</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Produits tensoriels topologiques et espaces nucléaires" , Amer. Math. Soc. (1955)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Pietsch, "Nuclear locally convex spaces" , Springer (1972) (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.M. Gel'fand, N.Ya. Vilenkin, "Generalized functions. Applications of harmonic analysis" , '''4''' , Acad. Press (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L. Schwartz, "Théorie des noyaux" , ''Proc. Internat. Congress Mathematicians (Cambridge, 1950)'' , '''1''' , Amer. Math. Soc. (1952) pp. 220–230</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> L. Schwartz, "Espaces de fonctions différentielles à valeurs vectorielles" ''J. d'Anal. Math.'' , '''4''' (1954–1955) pp. 88–148</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Trèves, "Topological vectorspaces, distributions and kernels" , Acad. Press (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Schwartz, "Théorie des distributions" , '''1–2''' , Hermann (1966)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Trèves, "Topological vectorspaces, distributions and kernels" , Acad. Press (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Schwartz, "Théorie des distributions" , '''1–2''' , Hermann (1966)</TD></TR></table> |
Latest revision as of 08:03, 6 June 2020
A bilinear form $ B ( f , g) $
on the Cartesian product $ F \times G $
of two locally convex spaces $ F $
and $ G $
that can be represented as
$$ B ( f, g) = \ \sum _ {i = 1 } ^ \infty \lambda _ {i} \langle f, f _ {i} ^ { \prime } \rangle \langle g, g _ {i} ^ \prime \rangle, $$
where $ \{ \lambda _ {i} \} $ is a summable sequence, $ \{ f _ {i} ^ { \prime } \} $ and $ \{ g _ {i} ^ \prime \} $ are equicontinuous sequences (cf. Equicontinuity) in the dual spaces $ F ^ { \prime } $ and $ G ^ \prime $ of $ F $ and $ G $, respectively, and $ \langle a, a ^ \prime \rangle $ denotes the value of the linear functional $ a ^ \prime $ on the vector $ a $. All nuclear bilinear forms are continuous. If $ F $ is a nuclear space, then for any locally convex space $ G $ all continuous bilinear forms on $ F \times G $ are nuclear (the kernel theorem). This result is due to A. Grothendieck [1]; the form stated is given in [2]; for other statements see [3]. The converse holds: If a space $ F $ satisfies the kernel theorem, then it is a nuclear space.
For spaces of smooth functions of compact support, the kernel theorem was first obtained by L. Schwartz [4]. Let $ D $ be the nuclear space of all infinitely-differentiable functions with compact support on the real line, equipped with the standard locally convex topology of Schwartz, so that the dual space $ D ^ \prime $ consists of all generalized functions on the line. In the special case when $ F = G = D $, the kernel theorem is equivalent to the following assertion: Every continuous bilinear functional on $ D \times D $ has the form
$$ B ( f, g) = \langle f ( t _ {1} ) g ( t _ {2} ), F \rangle = $$
$$ = \ \int\limits _ {- \infty } ^ \infty F ( t _ {1} , t _ {2} ) f ( t _ {1} ) g ( t _ {2} ) dt _ {1} dt _ {2} , $$
where $ f ( t), g ( t) \in D $ and $ F = F ( t _ {1} , t _ {2} ) $ is a generalized function in two variables. There are similar statements of the kernel theorem for spaces of smooth functions in several variables with compact support, for spaces of rapidly-decreasing functions, and for other specific nuclear spaces. Similar results are valid for multilinear forms.
A continuous bilinear form $ B ( f, g) $ on $ D \times D $ can be identified with a continuous linear operator $ A: D \rightarrow D ^ \prime $ by using the equality
$$ B ( f, g) = \langle g, Af \rangle, $$
and this leads to Schwartz' kernel theorem: For any continuous linear mapping $ A: D \rightarrow D ^ \prime $ there is a unique generalized function $ F ( t _ {1} , t _ {2} ) $ such that
$$ A: f ( t _ {1} ) \mapsto \int\limits _ {- \infty } ^ \infty F ( t _ {1} , t _ {2} ) f ( t _ {2} ) dt _ {2} $$
for all $ f \in D $. In other words, $ A $ is an integral operator with kernel $ F $.
References
[1] | A. Grothendieck, "Produits tensoriels topologiques et espaces nucléaires" , Amer. Math. Soc. (1955) |
[2] | A. Pietsch, "Nuclear locally convex spaces" , Springer (1972) (Translated from German) |
[3] | I.M. Gel'fand, N.Ya. Vilenkin, "Generalized functions. Applications of harmonic analysis" , 4 , Acad. Press (1964) (Translated from Russian) |
[4] | L. Schwartz, "Théorie des noyaux" , Proc. Internat. Congress Mathematicians (Cambridge, 1950) , 1 , Amer. Math. Soc. (1952) pp. 220–230 |
[5] | L. Schwartz, "Espaces de fonctions différentielles à valeurs vectorielles" J. d'Anal. Math. , 4 (1954–1955) pp. 88–148 |
Comments
References
[a1] | F. Trèves, "Topological vectorspaces, distributions and kernels" , Acad. Press (1967) |
[a2] | L. Schwartz, "Théorie des distributions" , 1–2 , Hermann (1966) |
Nuclear bilinear form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nuclear_bilinear_form&oldid=16398