Difference between revisions of "Schwarz kernel"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0835501.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/S083/S.0803550 Schwarz kernel | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''in the disc $ | z | < 1 $'' | ||
The function | The function | ||
− | + | $$ | |
+ | T( z; \zeta ) = | ||
+ | \frac{\zeta + z }{\zeta - z } | ||
+ | ,\ \ | ||
+ | \zeta = e ^ {i \sigma } ,\ \ | ||
+ | 0 \leq \sigma \leq 2 \pi . | ||
+ | $$ | ||
− | Let | + | Let $ D $ |
+ | be a finite simply-connected or multiply-connected domain with boundary $ \Gamma $, | ||
+ | let $ G( z; \zeta ) $ | ||
+ | be the [[Green function|Green function]] for the [[Laplace operator|Laplace operator]] in $ D $, | ||
+ | and let the real-valued function $ H( z; \zeta ) $ | ||
+ | be the conjugate to $ G( z; \zeta ) $. | ||
+ | Then the function $ M( z; \zeta ) = G( z; \zeta ) + iH( z; \zeta ) $ | ||
+ | is called the complex Green function of the domain $ D $. | ||
+ | The function $ M( z; \zeta ) $ | ||
+ | is an analytic but multiple-valued (if $ D $ | ||
+ | is multiply connected) function of $ z $ | ||
+ | and a single-valued non-analytic function of $ \zeta $. | ||
+ | The function | ||
− | + | $$ | |
+ | T( z; \zeta ) = | ||
+ | \frac{\partial M( z; \zeta ) }{\partial \nu } | ||
+ | , | ||
+ | $$ | ||
− | where | + | where $ \nu $ |
+ | is the direction of the interior normal at $ \zeta \in \Gamma $, | ||
+ | is called the Schwarz kernel of $ D $. | ||
− | Let | + | Let $ F( z) = u( z) + iv( z) $ |
+ | be an analytic function without singular points in $ D $, | ||
+ | and let $ u $ | ||
+ | be single valued and continuous in $ D \cup \Gamma $. | ||
+ | Then the following formula holds: | ||
− | + | $$ | |
+ | F( z) = | ||
+ | \frac{1}{2 \pi } | ||
+ | \int\limits _ \Gamma u( \zeta ) T( z; \zeta ) d \sigma + iv( a), | ||
+ | $$ | ||
− | where | + | where $ a \in D $ |
+ | is a fixed point and $ v( a) $ | ||
+ | is the value at $ a $ | ||
+ | of one of the branches of the function $ v( z) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. Mikhlin, "Linear integral equations" , Hindushtan Publ. Comp. , Delhi (1960) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. Mikhlin, "Linear integral equations" , Hindushtan Publ. Comp. , Delhi (1960) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Of course, some regularity conditions on | + | Of course, some regularity conditions on $ \Gamma $ |
+ | have to be assumed, so that the normal derivative $ ( \partial M )/ ( \partial \nu ) $ | ||
+ | is well defined. Note that the real part of $ T $ | ||
+ | is the Poisson kernel. | ||
See also [[Schwarz integral|Schwarz integral]]. | See also [[Schwarz integral|Schwarz integral]]. |
Latest revision as of 08:12, 6 June 2020
in the disc $ | z | < 1 $
The function
$$ T( z; \zeta ) = \frac{\zeta + z }{\zeta - z } ,\ \ \zeta = e ^ {i \sigma } ,\ \ 0 \leq \sigma \leq 2 \pi . $$
Let $ D $ be a finite simply-connected or multiply-connected domain with boundary $ \Gamma $, let $ G( z; \zeta ) $ be the Green function for the Laplace operator in $ D $, and let the real-valued function $ H( z; \zeta ) $ be the conjugate to $ G( z; \zeta ) $. Then the function $ M( z; \zeta ) = G( z; \zeta ) + iH( z; \zeta ) $ is called the complex Green function of the domain $ D $. The function $ M( z; \zeta ) $ is an analytic but multiple-valued (if $ D $ is multiply connected) function of $ z $ and a single-valued non-analytic function of $ \zeta $. The function
$$ T( z; \zeta ) = \frac{\partial M( z; \zeta ) }{\partial \nu } , $$
where $ \nu $ is the direction of the interior normal at $ \zeta \in \Gamma $, is called the Schwarz kernel of $ D $.
Let $ F( z) = u( z) + iv( z) $ be an analytic function without singular points in $ D $, and let $ u $ be single valued and continuous in $ D \cup \Gamma $. Then the following formula holds:
$$ F( z) = \frac{1}{2 \pi } \int\limits _ \Gamma u( \zeta ) T( z; \zeta ) d \sigma + iv( a), $$
where $ a \in D $ is a fixed point and $ v( a) $ is the value at $ a $ of one of the branches of the function $ v( z) $.
References
[1] | P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian) |
[2] | S.G. Mikhlin, "Linear integral equations" , Hindushtan Publ. Comp. , Delhi (1960) (Translated from Russian) |
Comments
Of course, some regularity conditions on $ \Gamma $ have to be assumed, so that the normal derivative $ ( \partial M )/ ( \partial \nu ) $ is well defined. Note that the real part of $ T $ is the Poisson kernel.
See also Schwarz integral.
Schwarz kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schwarz_kernel&oldid=16346