Difference between revisions of "Chebyshev polynomials"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0219401.png | ||
+ | $#A+1 = 50 n = 0 | ||
+ | $#C+1 = 50 : ~/encyclopedia/old_files/data/C021/C.0201940 Chebyshev polynomials | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of the first kind'' | ''of the first kind'' | ||
− | Polynomials that are orthogonal on the interval | + | Polynomials that are orthogonal on the interval $ [ - 1 , 1 ] $ |
+ | with the weight function | ||
− | + | $$ | |
+ | h _ {1} ( x) = | ||
+ | \frac{1}{\sqrt {1 - x ^ {2} }} | ||
+ | ,\ \ | ||
+ | x \in ( - 1 , 1 ) . | ||
+ | $$ | ||
For the standardized Chebyshev polynomials one has the formula | For the standardized Chebyshev polynomials one has the formula | ||
− | + | $$ | |
+ | T _ {n} ( x) = \cos ( n \mathop{\rm arc} \cos x ) ,\ \ | ||
+ | x \in [ - 1 , 1 ] , | ||
+ | $$ | ||
and the recurrence relation | and the recurrence relation | ||
− | + | $$ | |
+ | T _ {n+} 1 ( x) = 2 x T _ {n} ( x) - T _ {n-} 1 ( x) , | ||
+ | $$ | ||
by which one can determine the sequence | by which one can determine the sequence | ||
− | + | $$ | |
+ | T _ {0} ( x) = 1 ,\ T _ {1} ( x) = x ,\ \ | ||
+ | T _ {2} ( x) = 2 x ^ {2} - 1 , | ||
+ | $$ | ||
− | + | $$ | |
+ | T _ {3} ( x) = 4 x ^ {3} - 3 x ,\ T _ {4} ( x) = 8 x ^ {4} - 8 x ^ {2} + 1 , | ||
+ | $$ | ||
− | + | $$ | |
+ | T _ {5} ( x) = 16 x ^ {5} - 20 x ^ {3} + 5 x , . . . . | ||
+ | $$ | ||
The orthonormalized Chebyshev polynomials are: | The orthonormalized Chebyshev polynomials are: | ||
− | + | $$ | |
+ | \widehat{T} _ {0} ( x) = | ||
+ | \frac{1}{\sqrt \pi } | ||
+ | T _ {0} ( x) = | ||
+ | \frac{1}{\sqrt \pi } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | \widehat{T} _ {n} ( x) = \sqrt { | ||
+ | \frac{2} \pi | ||
+ | } T _ {n} ( x) = \sqrt { | ||
− | + | \frac{2} \pi | |
+ | } \cos ( n \mathop{\rm arc} \cos x ) ,\ n \geq 1 . | ||
+ | $$ | ||
− | + | The leading coefficient of $ T _ {n} ( x) $, | |
+ | for $ n \geq 1 $, | ||
+ | is $ 2 ^ {n-} 1 $. | ||
+ | Hence Chebyshev polynomials with leading coefficient 1 are defined by the formula | ||
− | + | $$ | |
+ | \widetilde{T} _ {n} ( x) = | ||
+ | \frac{1}{2 ^ {n-} 1 } | ||
+ | T _ {n} ( x) = \ | ||
− | + | \frac{1}{2 ^ {n-} 1 } | |
+ | \cos ( n { \mathop{\rm arc} \cos } x ) ,\ \ | ||
+ | n \geq 1 . | ||
+ | $$ | ||
− | + | The zeros of $ T _ {n} ( x) $, | |
+ | given by | ||
− | + | $$ | |
+ | x _ {k} ^ {(} n) = \cos | ||
+ | \frac{2 k - 1 }{2n} | ||
+ | \pi ,\ \ | ||
+ | k = 1 \dots n , | ||
+ | $$ | ||
− | + | frequently occur as interpolation nodes in quadrature formulas. The polynomial $ T _ {n} ( x) $ | |
+ | is a solution of the differential equation | ||
− | + | $$ | |
+ | ( 1 - x ^ {2} ) y ^ {\prime\prime} - x y ^ \prime + | ||
+ | n ^ {2} y = 0 . | ||
+ | $$ | ||
− | + | The polynomials $ \widetilde{T} _ {n} ( x) $ | |
+ | deviate as least as possible from zero on the interval $ [ - 1 , 1 ] $, | ||
+ | that is, for any other polynomial $ \widetilde{F} _ {n} ( x) $ | ||
+ | of degree $ n $ | ||
+ | with leading coefficient 1 one has the following condition | ||
− | + | $$ | |
+ | \max _ {x \in [ - 1 , 1 ] } | \widetilde{F} _ {n} ( x) | > \ | ||
+ | \max _ {x \in [ - 1 , 1 ] } | \widetilde{T} _ {n} ( x) | | ||
+ | = | ||
+ | \frac{1}{2 ^ {n-} 1 } | ||
+ | . | ||
+ | $$ | ||
− | + | On the other hand, for any polynomial $ Q _ {n} ( x) $ | |
+ | of degree $ n $ | ||
+ | or less and satisfying | ||
− | + | $$ | |
+ | \max _ {x \in [ - 1 , 1 ] } \ | ||
+ | | Q _ {n} ( x) | = 1 , | ||
+ | $$ | ||
− | + | one has, for any $ x _ {0} \in ( - \infty , - 1 ) \cup ( 1 , \infty ) $, | |
+ | the inequality | ||
− | + | $$ | |
+ | | Q ( x _ {0} ) | \leq | T _ {n} ( x _ {0} ) | . | ||
+ | $$ | ||
+ | |||
+ | If a function $ f $ | ||
+ | is continuous on the interval $ [ - 1 , 1 ] $ | ||
+ | and if its modulus of continuity $ \omega ( \delta , f ) $ | ||
+ | satisfies the Dini condition | ||
+ | |||
+ | $$ | ||
+ | \lim\limits _ {\delta \rightarrow 0 } \omega ( \delta , f ) \ | ||
+ | \mathop{\rm ln} | ||
+ | \frac{1} \delta | ||
+ | = 0 , | ||
+ | $$ | ||
then this function can be expanded in a Fourier–Chebyshev series, | then this function can be expanded in a Fourier–Chebyshev series, | ||
− | + | $$ | |
+ | f ( x) = \sum _ { n= } 0 ^ \infty a _ {n} \widehat{T} _ {n} ( x) ,\ \ | ||
+ | x \in [ - 1 , 1 ] , | ||
+ | $$ | ||
− | which converges uniformly on | + | which converges uniformly on $ [ - 1 , 1 ] $. |
+ | The coefficients in this series are defined by the formula | ||
− | + | $$ | |
+ | a _ {n} = \int\limits _ { - } 1 ^ { 1 } f ( t) \widehat{T} _ {n} ( t) | ||
+ | |||
+ | \frac{dt}{\sqrt {1- t ^ {2} } } | ||
+ | . | ||
+ | $$ | ||
− | If the function | + | If the function $ f $ |
+ | is $ p $- | ||
+ | times continuously differentiable on $ [ - 1 , 1 ] $ | ||
+ | and if its $ p $- | ||
+ | th derivative $ f ^ {(} p) $ | ||
+ | satisfies a Lipschitz condition of order $ \alpha $, | ||
+ | i.e. $ f ^ {(} p) \in \mathop{\rm Lip} \alpha $, | ||
+ | then one has the inequality | ||
− | + | $$ | |
+ | \left | f ( x) - \sum _ { k= } 0 ^ { n } a _ {k} \widehat{T} _ {k} ( x) \right | | ||
+ | \leq | ||
+ | \frac{c _ {1} \mathop{\rm ln} n }{n ^ {p + \alpha } } | ||
+ | ,\ \ | ||
+ | x \in [ - 1 , 1 ] , | ||
+ | $$ | ||
− | where the constant | + | where the constant $ c _ {1} $ |
+ | does not depend on $ n $ | ||
+ | and $ x $. | ||
Chebyshev polynomials of the second kind are defined by | Chebyshev polynomials of the second kind are defined by | ||
− | + | $$ | |
+ | U _ {n} ( x) = | ||
+ | \frac{1}{n+} | ||
+ | 1 T _ {n+} 1 ^ { \prime } ( x) = \sin [ ( n | ||
+ | + 1 ) { \mathop{\rm arc} \cos } x ] | ||
+ | \frac{1}{\sqrt {1 - x ^ {2} } } | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | These polynomials are orthogonal on the interval $ [ - 1 , 1 ] $ | ||
+ | with weight function | ||
− | + | $$ | |
+ | h _ {2} ( x) = \sqrt {1 - x ^ {2} } ,\ \ | ||
+ | x \in [ - 1 , 1 ] . | ||
+ | $$ | ||
− | + | For any polynomial $ \widetilde{Q} _ {n} ( x) $ | |
+ | with leading coefficient 1 one has the inequality | ||
− | + | $$ | |
− | + | \frac{1}{2 ^ {n-} 1 } | |
+ | = \int\limits _ { - } 1 ^ { 1 } | ||
+ | | \widetilde{U} _ {n} ( x) | dx \leq \int\limits _ { - } 1 ^ { 1 } | ||
+ | | \widetilde{Q} _ {n} ( x) | dx . | ||
+ | $$ | ||
The Chebyshev polynomials were introduced in 1854 by P.L. Chebyshev (cf. [[#References|[1]]]). Both systems of Chebyshev polynomials are special cases of [[Ultraspherical polynomials|ultraspherical polynomials]] and [[Jacobi polynomials|Jacobi polynomials]]. | The Chebyshev polynomials were introduced in 1854 by P.L. Chebyshev (cf. [[#References|[1]]]). Both systems of Chebyshev polynomials are special cases of [[Ultraspherical polynomials|ultraspherical polynomials]] and [[Jacobi polynomials|Jacobi polynomials]]. |
Revision as of 16:43, 4 June 2020
of the first kind
Polynomials that are orthogonal on the interval $ [ - 1 , 1 ] $ with the weight function
$$ h _ {1} ( x) = \frac{1}{\sqrt {1 - x ^ {2} }} ,\ \ x \in ( - 1 , 1 ) . $$
For the standardized Chebyshev polynomials one has the formula
$$ T _ {n} ( x) = \cos ( n \mathop{\rm arc} \cos x ) ,\ \ x \in [ - 1 , 1 ] , $$
and the recurrence relation
$$ T _ {n+} 1 ( x) = 2 x T _ {n} ( x) - T _ {n-} 1 ( x) , $$
by which one can determine the sequence
$$ T _ {0} ( x) = 1 ,\ T _ {1} ( x) = x ,\ \ T _ {2} ( x) = 2 x ^ {2} - 1 , $$
$$ T _ {3} ( x) = 4 x ^ {3} - 3 x ,\ T _ {4} ( x) = 8 x ^ {4} - 8 x ^ {2} + 1 , $$
$$ T _ {5} ( x) = 16 x ^ {5} - 20 x ^ {3} + 5 x , . . . . $$
The orthonormalized Chebyshev polynomials are:
$$ \widehat{T} _ {0} ( x) = \frac{1}{\sqrt \pi } T _ {0} ( x) = \frac{1}{\sqrt \pi } , $$
$$ \widehat{T} _ {n} ( x) = \sqrt { \frac{2} \pi } T _ {n} ( x) = \sqrt { \frac{2} \pi } \cos ( n \mathop{\rm arc} \cos x ) ,\ n \geq 1 . $$
The leading coefficient of $ T _ {n} ( x) $, for $ n \geq 1 $, is $ 2 ^ {n-} 1 $. Hence Chebyshev polynomials with leading coefficient 1 are defined by the formula
$$ \widetilde{T} _ {n} ( x) = \frac{1}{2 ^ {n-} 1 } T _ {n} ( x) = \ \frac{1}{2 ^ {n-} 1 } \cos ( n { \mathop{\rm arc} \cos } x ) ,\ \ n \geq 1 . $$
The zeros of $ T _ {n} ( x) $, given by
$$ x _ {k} ^ {(} n) = \cos \frac{2 k - 1 }{2n} \pi ,\ \ k = 1 \dots n , $$
frequently occur as interpolation nodes in quadrature formulas. The polynomial $ T _ {n} ( x) $ is a solution of the differential equation
$$ ( 1 - x ^ {2} ) y ^ {\prime\prime} - x y ^ \prime + n ^ {2} y = 0 . $$
The polynomials $ \widetilde{T} _ {n} ( x) $ deviate as least as possible from zero on the interval $ [ - 1 , 1 ] $, that is, for any other polynomial $ \widetilde{F} _ {n} ( x) $ of degree $ n $ with leading coefficient 1 one has the following condition
$$ \max _ {x \in [ - 1 , 1 ] } | \widetilde{F} _ {n} ( x) | > \ \max _ {x \in [ - 1 , 1 ] } | \widetilde{T} _ {n} ( x) | = \frac{1}{2 ^ {n-} 1 } . $$
On the other hand, for any polynomial $ Q _ {n} ( x) $ of degree $ n $ or less and satisfying
$$ \max _ {x \in [ - 1 , 1 ] } \ | Q _ {n} ( x) | = 1 , $$
one has, for any $ x _ {0} \in ( - \infty , - 1 ) \cup ( 1 , \infty ) $, the inequality
$$ | Q ( x _ {0} ) | \leq | T _ {n} ( x _ {0} ) | . $$
If a function $ f $ is continuous on the interval $ [ - 1 , 1 ] $ and if its modulus of continuity $ \omega ( \delta , f ) $ satisfies the Dini condition
$$ \lim\limits _ {\delta \rightarrow 0 } \omega ( \delta , f ) \ \mathop{\rm ln} \frac{1} \delta = 0 , $$
then this function can be expanded in a Fourier–Chebyshev series,
$$ f ( x) = \sum _ { n= } 0 ^ \infty a _ {n} \widehat{T} _ {n} ( x) ,\ \ x \in [ - 1 , 1 ] , $$
which converges uniformly on $ [ - 1 , 1 ] $. The coefficients in this series are defined by the formula
$$ a _ {n} = \int\limits _ { - } 1 ^ { 1 } f ( t) \widehat{T} _ {n} ( t) \frac{dt}{\sqrt {1- t ^ {2} } } . $$
If the function $ f $ is $ p $- times continuously differentiable on $ [ - 1 , 1 ] $ and if its $ p $- th derivative $ f ^ {(} p) $ satisfies a Lipschitz condition of order $ \alpha $, i.e. $ f ^ {(} p) \in \mathop{\rm Lip} \alpha $, then one has the inequality
$$ \left | f ( x) - \sum _ { k= } 0 ^ { n } a _ {k} \widehat{T} _ {k} ( x) \right | \leq \frac{c _ {1} \mathop{\rm ln} n }{n ^ {p + \alpha } } ,\ \ x \in [ - 1 , 1 ] , $$
where the constant $ c _ {1} $ does not depend on $ n $ and $ x $.
Chebyshev polynomials of the second kind are defined by
$$ U _ {n} ( x) = \frac{1}{n+} 1 T _ {n+} 1 ^ { \prime } ( x) = \sin [ ( n + 1 ) { \mathop{\rm arc} \cos } x ] \frac{1}{\sqrt {1 - x ^ {2} } } . $$
These polynomials are orthogonal on the interval $ [ - 1 , 1 ] $ with weight function
$$ h _ {2} ( x) = \sqrt {1 - x ^ {2} } ,\ \ x \in [ - 1 , 1 ] . $$
For any polynomial $ \widetilde{Q} _ {n} ( x) $ with leading coefficient 1 one has the inequality
$$ \frac{1}{2 ^ {n-} 1 } = \int\limits _ { - } 1 ^ { 1 } | \widetilde{U} _ {n} ( x) | dx \leq \int\limits _ { - } 1 ^ { 1 } | \widetilde{Q} _ {n} ( x) | dx . $$
The Chebyshev polynomials were introduced in 1854 by P.L. Chebyshev (cf. [1]). Both systems of Chebyshev polynomials are special cases of ultraspherical polynomials and Jacobi polynomials.
References
[1] | P.L. Chebyshev, , Collected works , 2 , Moscow-Leningrad (1947) pp. 23–51 (In Russian) |
[2] | G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975) |
Chebyshev polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chebyshev_polynomials&oldid=16283