Namespaces
Variants
Actions

Difference between revisions of "P-adic number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 1: Line 1:
An element of an extension of the field of rational numbers (cf. [[Extension of a field|Extension of a field]]) based on the divisibility of integers by a given prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p0710202.png" />. The extension is obtained by completing the field of rational numbers with respect to a non-Archimedean valuation (cf. [[Norm on a field|Norm on a field]]).
+
An element of an extension of the field of rational numbers (cf.
 +
[[Extension of a field|Extension of a field]]) based on the
 +
divisibility of integers by a given prime number $p$. The extension is
 +
obtained by completing the field of rational numbers with respect to a
 +
non-Archimedean valuation (cf.
 +
[[Norm on a field|Norm on a field]]).
  
A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p0710204.png" />-adic integer, for an arbitrary prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p0710205.png" />, is a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p0710206.png" /> of residues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p0710207.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p0710208.png" /> which satisfy the condition
+
A $p$-adic integer, for an arbitrary prime number $p$, is a sequence
 +
$x=(x_0,x_1,\dots)$ of residues $x_n$ modulo $p^{n+1}$ which satisfy the condition  
 +
$$x_n\equiv x_{n-1} \mod p^n,\quad n\ge 1$$
 +
The
 +
addition and the multiplication of $p$-adic integers is defined by the
 +
formulas
 +
$$(x+y)_n \equiv x_n+y_n \mod p^{n+1},$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p0710209.png" /></td> </tr></table>
+
$$(xy)_n \equiv x_n y_n \mod p^{n+1},$$
 +
Each integer $m$ is identified with the $p$-adic number
 +
$x=(m,m,\dots)$. With respect to addition and multiplication, the $p$-adic
 +
integers form a ring which contains the ring of integers. The ring of
 +
$p$-adic integers may also be defined as the projective limit
 +
$$\def\plim#1{\lim_\underset{#1}{\longleftarrow}\;}\plim{n}\Z/p^n\Z$$
 +
of
 +
residues modulo $p^n$ (with respect to the natural projections).
  
The addition and the multiplication of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102010.png" />-adic integers is defined by the formulas
+
A $p$-adic number, or rational $p$-adic number, is an element of the
 +
quotient field $\Q_p$ of the ring $\Z_p$ of $p$-adic integers. This field is
 +
called the field of $p$-adic numbers and it contains the field of
 +
rational numbers as a subfield. Both the ring and the field of
 +
$p$-adic numbers carry a natural topology. This topology may be
 +
defined by a metric connected with the $p$-adic norm, i.e. with the
 +
function $|x|_p$ of the $p$-adic number $x$ which is defined as
 +
follows. If $x\ne 0$, $x$ can be uniquely represented as $p^n a$, where $a$ is
 +
an invertible element of the ring of $p$-adic integers. The $p$-adic
 +
norm $|x|_p$ is then equal to $p^{-n}$. If $x=0$, then $|x|_p = 0$. If $|x|_p$ is initially
 +
defined on rational numbers only, the field of $p$-adic numbers can be
 +
obtained as the completion of the field of rational numbers with
 +
respect to the $p$-adic norm.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102011.png" /></td> </tr></table>
+
Each element of the field of $p$-adic numbers may be represented in
 +
the form
 +
$$x=\sum_{k=k_0}^\infty a_kp^k,\quad 0\le a_k <p,\label{*}$$
 +
where $a_k$ are integers, $k_0$ is some integer, $a_{k_0}$, and
 +
the series (*) converges in the metric of the field $\Q_p$. The numbers
 +
$x\in\Q_p$ with $|x|_p\le 1$ (i.e. $k_0\ge 0$) form the ring $\Z_p$ of $p$-adic integers, which
 +
is the completion of the ring of integers $\Z$ of the field $\Q$. The
 +
numbers $x\in\Z_p$ with $|x|_p = 1$ (i.e. $k_0=0$, $a_0\ne 0$) form a multiplicative group and
 +
are called $p$-adic units. The set of numbers $x\in\Z_p$ with $|x|_p < 1$ (i.e. $k_0\ge 1$)
 +
forms a principal ideal in $\Z_p$ with generating element $p$. The ring
 +
$\Z_p$ is a complete discrete valuation ring (cf. also
 +
[[Discretely-normed ring|Discretely-normed ring]]). The field $\Q_p$ is
 +
locally compact in the topology induced by the metric $|x-x'|_p$. It
 +
therefore admits an invariant measure $\mu$, usually taken with the
 +
condition $\mu(\Z_p) = 1$. For different $p$, the valuations $|x|_p$ are independent,
 +
and the fields $\Q_p$ are non-isomorphic. Numerous facts and concepts of
 +
classical analysis can be generalized to the case of $p$-adic fields.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102012.png" /></td> </tr></table>
+
$p$-adic numbers are connected with the solution of Diophantine
 +
equations modulo increasing powers of a prime number. Thus, if $F(x_1,\dots,x_m)$ is
 +
a polynomial with integral coefficients, the solvability, for all $k\ge 1$,
 +
of the congruence
 +
$$F(x_1,\dots,x_m)\equiv 0 \mod p^k$$
 +
is equivalent to the solvability of the
 +
equation $F(x_1,\dots,x_m) = 0$ in $p$-adic integers. A necessary condition for the
 +
solvability of this equation in integers or in rational numbers is its
 +
solvability in the rings or, correspondingly, in the fields of
 +
$p$-adic numbers for all $p$. Such an approach to the solution of
 +
Diophantine equations and, in particular, the question whether these
 +
conditions — the so-called local conditions — are sufficient,
 +
constitutes an important branch of modern number theory (cf.
 +
[[Diophantine geometry|Diophantine geometry]]).
  
Each integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102013.png" /> is identified with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102014.png" />-adic number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102015.png" />. With respect to addition and multiplication, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102016.png" />-adic integers form a ring which contains the ring of integers. The ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102017.png" />-adic integers may also be defined as the projective limit
+
The above solvability condition may in one special case be replaced by
 +
a simpler one. In fact, if
 +
$$F(x_1,\dots,x_m)\equiv 0 \mod p$$
 +
has a solution $({\bar x}_1,\dots,{\bar x}_m)$ and if this
 +
solution defines a non-singular point of the hypersurface ${\bar F}(x_1,\dots,x_m) = 0 $, where
 +
$\bar F$ is the polynomial $F$ modulo $p$, then this equation has a
 +
solution in $p$-adic integers which is congruent to $({\bar x}_1,\dots,{\bar x}_m)$ modulo
 +
$p$. This theorem, which is known as the
 +
[[Hensel lemma|Hensel lemma]], is a special case of a more general
 +
fact in the theory of schemes.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102018.png" /></td> </tr></table>
+
The ring of $p$-adic integers may be regarded as a special case of the
 +
construction of Witt rings $W(A)$. The ring of $p$-adic integers is
 +
obtained if $A=\F_p$ is the finite field of $p$ elements (cf.
 +
[[Witt vector|Witt vector]]). Another generalization of $p$-adic
 +
numbers are $\mathfrak{p}$-adic numbers, resulting from the completion of
 +
algebraic number fields with respect to non-Archimedean valuations
 +
connected with prime divisors.
  
of residues modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102019.png" /> (with respect to the natural projections).
+
$p$-adic numbers were introduced by K. Hensel
 
+
[[#References|[1]]]. Their canonical representation (*) is analogous
A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102021.png" />-adic number, or rational <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102023.png" />-adic number, is an element of the quotient field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102024.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102026.png" />-adic integers. This field is called the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102028.png" />-adic numbers and it contains the field of rational numbers as a subfield. Both the ring and the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102029.png" />-adic numbers carry a natural topology. This topology may be defined by a metric connected with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102031.png" />-adic norm, i.e. with the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102032.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102033.png" />-adic number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102034.png" /> which is defined as follows. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102036.png" /> can be uniquely represented as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102037.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102038.png" /> is an invertible element of the ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102039.png" />-adic integers. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102040.png" />-adic norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102041.png" /> is then equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102042.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102043.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102044.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102045.png" /> is initially defined on rational numbers only, the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102046.png" />-adic numbers can be obtained as the completion of the field of rational numbers with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102047.png" />-adic norm.
+
to the expansion of analytic functions into power series. This is one
 
+
of the manifestations of the analogy between algebraic numbers and
Each element of the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102048.png" />-adic numbers may be represented in the form
+
algebraic functions.
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102049.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102050.png" /> are integers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102051.png" /> is some integer, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102052.png" />, and the series (*) converges in the metric of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102053.png" />. The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102054.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102055.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102056.png" />) form the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102057.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102058.png" />-adic integers, which is the completion of the ring of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102059.png" /> of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102060.png" />. The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102061.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102062.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102064.png" />) form a multiplicative group and are called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102066.png" />-adic units. The set of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102067.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102068.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102069.png" />) forms a principal ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102070.png" /> with generating element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102071.png" />. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102072.png" /> is a complete discrete valuation ring (cf. also [[Discretely-normed ring|Discretely-normed ring]]). The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102073.png" /> is locally compact in the topology induced by the metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102074.png" />. It therefore admits an invariant measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102075.png" />, usually taken with the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102076.png" />. For different <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102077.png" />, the valuations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102078.png" /> are independent, and the fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102079.png" /> are non-isomorphic. Numerous facts and concepts of classical analysis can be generalized to the case of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102080.png" />-adic fields.
 
 
 
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102081.png" />-adic numbers are connected with the solution of Diophantine equations modulo increasing powers of a prime number. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102082.png" /> is a polynomial with integral coefficients, the solvability, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102083.png" />, of the congruence
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102084.png" /></td> </tr></table>
 
 
 
is equivalent to the solvability of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102085.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102086.png" />-adic integers. A necessary condition for the solvability of this equation in integers or in rational numbers is its solvability in the rings or, correspondingly, in the fields of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102087.png" />-adic numbers for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102088.png" />. Such an approach to the solution of Diophantine equations and, in particular, the question whether these conditions — the so-called local conditions — are sufficient, constitutes an important branch of modern number theory (cf. [[Diophantine geometry|Diophantine geometry]]).
 
 
 
The above solvability condition may in one special case be replaced by a simpler one. In fact, if
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102090.png" /></td> </tr></table>
 
 
 
has a solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102091.png" /> and if this solution defines a non-singular point of the hypersurface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102092.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102093.png" /> is the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102094.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102095.png" />, then this equation has a solution in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102096.png" />-adic integers which is congruent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102097.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102098.png" />. This theorem, which is known as the [[Hensel lemma|Hensel lemma]], is a special case of a more general fact in the theory of schemes.
 
 
 
The ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p07102099.png" />-adic integers may be regarded as a special case of the construction of Witt rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p071020100.png" />. The ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p071020101.png" />-adic integers is obtained if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p071020102.png" /> is the finite field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p071020103.png" /> elements (cf. [[Witt vector|Witt vector]]). Another generalization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p071020104.png" />-adic numbers are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p071020105.png" />-adic numbers, resulting from the completion of algebraic number fields with respect to non-Archimedean valuations connected with prime divisors.
 
 
 
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071020/p071020106.png" />-adic numbers were introduced by K. Hensel [[#References|[1]]]. Their canonical representation (*) is analogous to the expansion of analytic functions into power series. This is one of the manifestations of the analogy between algebraic numbers and algebraic functions.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Hensel,   "Ueber eine neue Begründung der Theorie der algebraischen Zahlen" ''Jahresber. Deutsch. Math.-Verein'' , '''6''' : 1 (1899) pp. 83–88</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Z.I. Borevich,   I.R. Shafarevich,   "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang,   "Algebraic numbers" , Springer (1986)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Weyl,   "Algebraic theory of numbers" , Princeton Univ. Press (1959)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Hasse,   "Zahlentheorie" , Akademie Verlag (1963)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A. Weil,   "Basic number theory" , Springer (1974)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> N. Bourbaki,   "Elements of mathematics" , '''7. Commutative algebra''' , Addison-Wesley (1972) (Translated from French)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD>
 +
<TD valign="top"> K. Hensel, "Ueber eine neue Begründung der Theorie der algebraischen Zahlen" ''Jahresber. Deutsch. Math.-Verein'' , '''6''' : 1 (1899) pp. 83–88</TD>
 +
</TR><TR><TD valign="top">[2]</TD>
 +
<TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD>
 +
</TR><TR><TD valign="top">[3]</TD>
 +
<TD valign="top"> S. Lang, "Algebraic numbers" , Springer (1986)</TD>
 +
</TR><TR><TD valign="top">[4]</TD>
 +
<TD valign="top"> H. Weyl, "Algebraic theory of numbers" , Princeton Univ. Press (1959)</TD>
 +
</TR><TR><TD valign="top">[5]</TD>
 +
<TD valign="top"> H. Hasse, "Zahlentheorie" , Akademie Verlag (1963)</TD>
 +
</TR><TR><TD valign="top">[6]</TD>
 +
<TD valign="top"> A. Weil, "Basic number theory" , Springer (1974)</TD>
 +
</TR><TR><TD valign="top">[7]</TD>
 +
<TD valign="top"> N. Bourbaki, "Elements of mathematics" , '''7. Commutative algebra''' , Addison-Wesley (1972) (Translated from French)</TD>
 +
</TR></table>

Revision as of 18:59, 23 November 2011

An element of an extension of the field of rational numbers (cf. Extension of a field) based on the divisibility of integers by a given prime number $p$. The extension is obtained by completing the field of rational numbers with respect to a non-Archimedean valuation (cf. Norm on a field).

A $p$-adic integer, for an arbitrary prime number $p$, is a sequence $x=(x_0,x_1,\dots)$ of residues $x_n$ modulo $p^{n+1}$ which satisfy the condition $$x_n\equiv x_{n-1} \mod p^n,\quad n\ge 1$$ The addition and the multiplication of $p$-adic integers is defined by the formulas $$(x+y)_n \equiv x_n+y_n \mod p^{n+1},$$

$$(xy)_n \equiv x_n y_n \mod p^{n+1},$$ Each integer $m$ is identified with the $p$-adic number $x=(m,m,\dots)$. With respect to addition and multiplication, the $p$-adic integers form a ring which contains the ring of integers. The ring of $p$-adic integers may also be defined as the projective limit $$\def\plim#1{\lim_\underset{#1}{\longleftarrow}\;}\plim{n}\Z/p^n\Z$$ of residues modulo $p^n$ (with respect to the natural projections).

A $p$-adic number, or rational $p$-adic number, is an element of the quotient field $\Q_p$ of the ring $\Z_p$ of $p$-adic integers. This field is called the field of $p$-adic numbers and it contains the field of rational numbers as a subfield. Both the ring and the field of $p$-adic numbers carry a natural topology. This topology may be defined by a metric connected with the $p$-adic norm, i.e. with the function $|x|_p$ of the $p$-adic number $x$ which is defined as follows. If $x\ne 0$, $x$ can be uniquely represented as $p^n a$, where $a$ is an invertible element of the ring of $p$-adic integers. The $p$-adic norm $|x|_p$ is then equal to $p^{-n}$. If $x=0$, then $|x|_p = 0$. If $|x|_p$ is initially defined on rational numbers only, the field of $p$-adic numbers can be obtained as the completion of the field of rational numbers with respect to the $p$-adic norm.

Each element of the field of $p$-adic numbers may be represented in the form $$x=\sum_{k=k_0}^\infty a_kp^k,\quad 0\le a_k <p,\label{*}$$ where $a_k$ are integers, $k_0$ is some integer, $a_{k_0}$, and the series (*) converges in the metric of the field $\Q_p$. The numbers $x\in\Q_p$ with $|x|_p\le 1$ (i.e. $k_0\ge 0$) form the ring $\Z_p$ of $p$-adic integers, which is the completion of the ring of integers $\Z$ of the field $\Q$. The numbers $x\in\Z_p$ with $|x|_p = 1$ (i.e. $k_0=0$, $a_0\ne 0$) form a multiplicative group and are called $p$-adic units. The set of numbers $x\in\Z_p$ with $|x|_p < 1$ (i.e. $k_0\ge 1$) forms a principal ideal in $\Z_p$ with generating element $p$. The ring $\Z_p$ is a complete discrete valuation ring (cf. also Discretely-normed ring). The field $\Q_p$ is locally compact in the topology induced by the metric $|x-x'|_p$. It therefore admits an invariant measure $\mu$, usually taken with the condition $\mu(\Z_p) = 1$. For different $p$, the valuations $|x|_p$ are independent, and the fields $\Q_p$ are non-isomorphic. Numerous facts and concepts of classical analysis can be generalized to the case of $p$-adic fields.

$p$-adic numbers are connected with the solution of Diophantine equations modulo increasing powers of a prime number. Thus, if $F(x_1,\dots,x_m)$ is a polynomial with integral coefficients, the solvability, for all $k\ge 1$, of the congruence $$F(x_1,\dots,x_m)\equiv 0 \mod p^k$$ is equivalent to the solvability of the equation $F(x_1,\dots,x_m) = 0$ in $p$-adic integers. A necessary condition for the solvability of this equation in integers or in rational numbers is its solvability in the rings or, correspondingly, in the fields of $p$-adic numbers for all $p$. Such an approach to the solution of Diophantine equations and, in particular, the question whether these conditions — the so-called local conditions — are sufficient, constitutes an important branch of modern number theory (cf. Diophantine geometry).

The above solvability condition may in one special case be replaced by a simpler one. In fact, if $$F(x_1,\dots,x_m)\equiv 0 \mod p$$ has a solution $({\bar x}_1,\dots,{\bar x}_m)$ and if this solution defines a non-singular point of the hypersurface ${\bar F}(x_1,\dots,x_m) = 0 $, where $\bar F$ is the polynomial $F$ modulo $p$, then this equation has a solution in $p$-adic integers which is congruent to $({\bar x}_1,\dots,{\bar x}_m)$ modulo $p$. This theorem, which is known as the Hensel lemma, is a special case of a more general fact in the theory of schemes.

The ring of $p$-adic integers may be regarded as a special case of the construction of Witt rings $W(A)$. The ring of $p$-adic integers is obtained if $A=\F_p$ is the finite field of $p$ elements (cf. Witt vector). Another generalization of $p$-adic numbers are $\mathfrak{p}$-adic numbers, resulting from the completion of algebraic number fields with respect to non-Archimedean valuations connected with prime divisors.

$p$-adic numbers were introduced by K. Hensel [1]. Their canonical representation (*) is analogous to the expansion of analytic functions into power series. This is one of the manifestations of the analogy between algebraic numbers and algebraic functions.

References

[1] K. Hensel, "Ueber eine neue Begründung der Theorie der algebraischen Zahlen" Jahresber. Deutsch. Math.-Verein , 6 : 1 (1899) pp. 83–88
[2] Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966)
[3] S. Lang, "Algebraic numbers" , Springer (1986)
[4] H. Weyl, "Algebraic theory of numbers" , Princeton Univ. Press (1959)
[5] H. Hasse, "Zahlentheorie" , Akademie Verlag (1963)
[6] A. Weil, "Basic number theory" , Springer (1974)
[7] N. Bourbaki, "Elements of mathematics" , 7. Commutative algebra , Addison-Wesley (1972) (Translated from French)
How to Cite This Entry:
P-adic number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=P-adic_number&oldid=16260
This article was adapted from an original article by A.N. ParshinV.G. Sprindzhuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article