Difference between revisions of "Riesz product"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | r0822801.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/R082/R.0802280 Riesz product | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
An [[Infinite product|infinite product]] of the form | An [[Infinite product|infinite product]] of the form | ||
− | + | $$ \tag{1 } | |
+ | \prod _ { k= } 1 ^ \infty ( 1 + \alpha _ {k} \cos n _ {k} x),\ \ | ||
+ | x \in [ 0, \pi ], | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
− | + | \frac{n _ {k+} 1 }{n _ {k} } | |
+ | \geq q > 1,\ | a _ {k} | \leq 1,\ \ | ||
+ | \forall k \in \mathbf N . | ||
+ | $$ | ||
− | With the help of such products ( | + | With the help of such products ( $ a _ {k} = 1 $, |
+ | $ n _ {k} = 3 ^ {k} $ | ||
+ | for all $ k \in \mathbf N $) | ||
+ | F. Riesz indicated the first example of a continuous function of bounded variation whose Fourier coefficients are not of order $ o( 1/n) $. | ||
+ | If $ q > 3 $, | ||
+ | then the identity | ||
− | + | $$ | |
+ | \prod _ { k= } 1 ^ { m } ( 1 + a _ {k} \cos n _ {k} x) = \ | ||
+ | 1 + \sum _ { k= } 1 ^ { {p _ m} } \gamma _ {k} \cos kx, | ||
+ | $$ | ||
− | + | $$ | |
+ | p _ {m} = n _ {1} + \dots + n _ {m} ,\ m \in \mathbf N ,\ x \in [ 0, \pi ], | ||
+ | $$ | ||
gives the series | gives the series | ||
− | + | $$ \tag{2 } | |
+ | 1 + \sum _ { k= } 1 ^ \infty \gamma _ {k} \cos kx , | ||
+ | $$ | ||
− | which is said to represent the Riesz product (1). In case | + | which is said to represent the Riesz product (1). In case $ q \geq 3 $, |
+ | $ - 1 \leq a _ {k} \leq 1 $ | ||
+ | for all $ k \in \mathbf N $, | ||
+ | the series (2) is the Fourier–Stieltjes series of a non-decreasing continuous function $ F $. | ||
+ | If $ q > 3 $ | ||
+ | and | ||
− | + | $$ | |
+ | \sum _ { k= } 1 ^ \infty a _ {k} ^ {2} = + \infty ,\ \ | ||
+ | - 1 \leq a _ {k} \leq 1 ,\ \forall k \in \mathbf N , | ||
+ | $$ | ||
− | then | + | then $ F ^ { \prime } ( x) = 0 $ |
+ | almost-everywhere. If, in addition, $ a _ {k} \rightarrow 0 $, | ||
+ | then the series (2) converges to zero almost-everywhere. | ||
− | A number of problems, mainly in the theory of [[Trigonometric series|trigonometric series]], has been solved using a natural generalization of the Riesz product when in (1) | + | A number of problems, mainly in the theory of [[Trigonometric series|trigonometric series]], has been solved using a natural generalization of the Riesz product when in (1) $ a _ {k} \cos n _ {k} x $ |
+ | is replaced by specially chosen trigonometric polynomials $ T _ {k} ( x) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> |
Revision as of 08:11, 6 June 2020
An infinite product of the form
$$ \tag{1 } \prod _ { k= } 1 ^ \infty ( 1 + \alpha _ {k} \cos n _ {k} x),\ \ x \in [ 0, \pi ], $$
$$ \frac{n _ {k+} 1 }{n _ {k} } \geq q > 1,\ | a _ {k} | \leq 1,\ \ \forall k \in \mathbf N . $$
With the help of such products ( $ a _ {k} = 1 $, $ n _ {k} = 3 ^ {k} $ for all $ k \in \mathbf N $) F. Riesz indicated the first example of a continuous function of bounded variation whose Fourier coefficients are not of order $ o( 1/n) $. If $ q > 3 $, then the identity
$$ \prod _ { k= } 1 ^ { m } ( 1 + a _ {k} \cos n _ {k} x) = \ 1 + \sum _ { k= } 1 ^ { {p _ m} } \gamma _ {k} \cos kx, $$
$$ p _ {m} = n _ {1} + \dots + n _ {m} ,\ m \in \mathbf N ,\ x \in [ 0, \pi ], $$
gives the series
$$ \tag{2 } 1 + \sum _ { k= } 1 ^ \infty \gamma _ {k} \cos kx , $$
which is said to represent the Riesz product (1). In case $ q \geq 3 $, $ - 1 \leq a _ {k} \leq 1 $ for all $ k \in \mathbf N $, the series (2) is the Fourier–Stieltjes series of a non-decreasing continuous function $ F $. If $ q > 3 $ and
$$ \sum _ { k= } 1 ^ \infty a _ {k} ^ {2} = + \infty ,\ \ - 1 \leq a _ {k} \leq 1 ,\ \forall k \in \mathbf N , $$
then $ F ^ { \prime } ( x) = 0 $ almost-everywhere. If, in addition, $ a _ {k} \rightarrow 0 $, then the series (2) converges to zero almost-everywhere.
A number of problems, mainly in the theory of trigonometric series, has been solved using a natural generalization of the Riesz product when in (1) $ a _ {k} \cos n _ {k} x $ is replaced by specially chosen trigonometric polynomials $ T _ {k} ( x) $.
References
[1] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
[2] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
Riesz product. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_product&oldid=16157