Difference between revisions of "Struve function"
(Importing text file) |
(Texxed and corrected some mistakes) |
||
Line 1: | Line 1: | ||
+ | {{MSC|34}} | ||
+ | {{TEX|done}} | ||
+ | |||
The function | The function | ||
+ | \[ | ||
+ | {\bf H}_\nu (x) = \frac{2\left(\textstyle{\frac{x}{2}}\right)^\nu}{\Gamma \left(\nu + | ||
+ | \textstyle{\frac{1}{2}}\right) \Gamma \left(\textstyle{\frac{1}{2}}\right)} \int_0^{\frac{\pi}{2}} | ||
+ | \, \sin (x\, \cos \theta)\, \sin^{2\nu} \theta\, d\theta\, , | ||
+ | \] | ||
+ | where $\nu$ is a complex parameter with ${\rm Re}\, \nu > \frac{1}{2}$ and $x$ a complex variable. | ||
+ | It was introduced by H. Struve in {{Cite|S}} and it is therefore sometimes denoted by $S_\nu$. | ||
− | + | The Struve function satisfies the inhomogeneous [[Bessel equation|Bessel equation]]: | |
− | + | \[ | |
− | + | x^2 y'' + x y' + (x^2 - \nu^2) y = \frac{4 \left(\textstyle{\frac{x}{2}}\right)^{\nu+1}}{\Gamma \left(\nu + \textstyle{\frac{1}{2}}\right) \Gamma \left(\textstyle{\frac{1}{2}}\right)} | |
− | + | \] | |
− | + | (see 10.4 in {{Cite|Wa}}). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | The Struve function has the expansion | |
+ | \begin{equation}\label{e:expansion} | ||
+ | {\bf H}_\nu (x) = \left(\frac{x}{2}\right)^{\nu +1} \sum_{k=0}^\infty (-1)^k \frac{\left(\textstyle{\frac{x}{2}}\right)^{2k}}{\Gamma \left(k+ \textstyle{\frac{3}{2}}\right) | ||
+ | \Gamma \left(\nu + k + \textstyle{\frac{3}{2}}\right)}\, . | ||
+ | \end{equation} | ||
+ | The Struve functions of integral order $n$ is related to the [[Weber function|Weber function]] ${\bf E}_n$ by the following relation: | ||
+ | \[ | ||
+ | {\bf E}_n (x) = \sum_{m=1}^n \frac{e^{\frac{1}{2} (m-1) \pi i} \left(\textstyle{\frac{x}{2}}\right)^{n-k}}{\Gamma \left(1-\textstyle{\frac{m}{2}}\right) \Gamma \left(n+1 - \textstyle{\frac{m}{2}}\right)} - {\bf H}_n (x) \quad \mbox{for }\; n\geq 0 | ||
+ | \] | ||
+ | \[ | ||
+ | {\bf E}_{-n} (x) = \frac{(-1)^{n+1}}{\pi} \sum_{0 \leq m < \frac{n}{2}} \frac{\Gamma \left( n - m - | ||
+ | \textstyle{\frac{1}{2}}\right) \left(\frac{x}{2}\right)^{-n+2m+1}}{\Gamma \left(m + \textstyle{\frac{3}{2}}\right)} - {\bf H}_{-n} (x)\, \quad \mbox{for }\; n > 0\, , | ||
+ | \] | ||
+ | (see 10.44 of {{Cite|Wa}}). | ||
− | + | The Struve function of order $n + \frac{1}{2}$ with integer $n$ can be expressed in terms of elementary functions. For instance | |
+ | \begin{align*} | ||
+ | {\bf H}_{1/2} (x) &= \left(\frac{2}{\pi x}\right)^{\frac{1}{2}} (1-\cos x)\\ | ||
+ | {\bf H}_{3/2} (x) &= \left(\frac{x}{2\pi}\right)^{\frac{1}{2}} \left(1+\frac{2}{x^2}\right) | ||
+ | - \left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \left(\sin x + \frac{\cos x}{x}\right) | ||
+ | \end{align*} | ||
+ | (cf. 10.42 of {{Cite|Wa}}). | ||
− | < | + | For $|{\rm arg}\, x| < \pi$ and $|x|$ large we have the asymptotic expansion |
+ | \[ | ||
+ | {\bf H}_\nu (x) = Y_\nu (x) + \frac{1}{\pi} \sum_{m=0}^{k-1} \frac{\Gamma \left(m + \textstyle{\frac{1}{2}}\right)}{\Gamma \left(\nu + \textstyle{\frac{1}{2}} - m\right) \left(\textstyle{\frac{x}{2}}\right)^{2m - \nu +1}} + O \left(|x|^{\nu - 2k -1}\right)\, , | ||
+ | \] | ||
+ | where $Y_\nu$ is the [[Neumann function|Neumann function]]. | ||
− | + | The modified Struve function is given by | |
+ | \[ | ||
+ | {\bf L}_\nu (x) = \left\{\begin{array}{ll} | ||
+ | &e^{-\frac{1}{2} \nu \pi i} {\bf H}_\nu ( ix) \quad &\mbox{if } -\pi < {\rm arg}\, z \leq \frac{\pi}{2}\\ | ||
+ | &e^{\frac{3}{2} \nu \pi i} {\bf H}_\nu ( -ix) \quad &\mbox{if } \frac{\pi}{2} < {\rm arg}\, z \leq \pi | ||
+ | \end{array}\right. | ||
+ | \] | ||
+ | and thus bears the same relation to the Struwe function ${\bf H}_\nu (x)$ as the modified | ||
+ | Bessel function $I_\nu$ bears to the Bessel function $J_\nu$ (see [[Cylinder functions]]). | ||
− | + | The expansion \eqref{e:expansion} translates into a corresponding expansion for the modified Struve function. We have moreover the interesting relation | |
+ | \[ | ||
+ | {\bf L}_\nu (x) = I_{-\nu} (x) - \frac{2 \left(\textstyle{\frac{x}{2}}\right)^\nu}{\Gamma \left( \nu + \textstyle{\frac{1}{2}}\right) \Gamma \left(\textstyle{\frac{1}{2}}\right)} \int_0^\infty \sin (xu)\, (1+ u^2)^{-\nu - \frac{1}{2}}\, du | ||
+ | \] | ||
+ | which leads to the asymptotic expansion | ||
+ | \[ | ||
+ | {\bf L}_\nu (x) = I_{-\nu} (x) - \frac{\left(\textstyle{\frac{x}{2}}\right)^{\nu-1}}{\sqrt{\pi}\,\Gamma \left(\nu + \textstyle{\frac{1}{2}}\right)} | ||
+ | \] | ||
+ | for $|x|$ large. | ||
− | + | The Struve function can be expressed in terms of a [[Hypergeometric function|hypergeometric function]] of type $_1 F_2$, cf. {{Cite|AS}}, formula (7.5). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|AS}}||valign="top"| M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1970) | ||
− | + | |- | |
− | + | |valign="top"|{{Ref|BE}}||valign="top"| H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953) | |
− | + | |- | |
− | + | |valign="top"|{{Ref|JES}}||valign="top"| E. Jahnke, F. Emde, F. Lösch, "Tafeln höheren Funktionen" , Teubner (1966) | |
− | + | |- | |
− | + | |valign="top"|{{Ref|S}}||valign="top"| H. Struve, ''Ann. Physik Chemie'' , '''17''' (1882) pp. 1008–1016 | |
− | + | |- | |
+ | |valign="top"|{{Ref|Wa}}||valign="top"| G.N. Watson, "A treatise on the theory of Bessel functions", '''1–2''', Cambridge Univ. Press (1952) {{MR|1349110}} {{MR|1570252}} {{MR|0010746}} {{MR|1520278}} {{ZBL|0849.33001}} {{ZBL|0174.36202}} {{ZBL|0063.08184}} | ||
+ | |- | ||
+ | |} |
Revision as of 08:16, 22 February 2014
2020 Mathematics Subject Classification: Primary: 34-XX [MSN][ZBL]
The function \[ {\bf H}_\nu (x) = \frac{2\left(\textstyle{\frac{x}{2}}\right)^\nu}{\Gamma \left(\nu + \textstyle{\frac{1}{2}}\right) \Gamma \left(\textstyle{\frac{1}{2}}\right)} \int_0^{\frac{\pi}{2}} \, \sin (x\, \cos \theta)\, \sin^{2\nu} \theta\, d\theta\, , \] where $\nu$ is a complex parameter with ${\rm Re}\, \nu > \frac{1}{2}$ and $x$ a complex variable. It was introduced by H. Struve in [S] and it is therefore sometimes denoted by $S_\nu$.
The Struve function satisfies the inhomogeneous Bessel equation: \[ x^2 y'' + x y' + (x^2 - \nu^2) y = \frac{4 \left(\textstyle{\frac{x}{2}}\right)^{\nu+1}}{\Gamma \left(\nu + \textstyle{\frac{1}{2}}\right) \Gamma \left(\textstyle{\frac{1}{2}}\right)} \] (see 10.4 in [Wa]).
The Struve function has the expansion \begin{equation}\label{e:expansion} {\bf H}_\nu (x) = \left(\frac{x}{2}\right)^{\nu +1} \sum_{k=0}^\infty (-1)^k \frac{\left(\textstyle{\frac{x}{2}}\right)^{2k}}{\Gamma \left(k+ \textstyle{\frac{3}{2}}\right) \Gamma \left(\nu + k + \textstyle{\frac{3}{2}}\right)}\, . \end{equation} The Struve functions of integral order $n$ is related to the Weber function ${\bf E}_n$ by the following relation: \[ {\bf E}_n (x) = \sum_{m=1}^n \frac{e^{\frac{1}{2} (m-1) \pi i} \left(\textstyle{\frac{x}{2}}\right)^{n-k}}{\Gamma \left(1-\textstyle{\frac{m}{2}}\right) \Gamma \left(n+1 - \textstyle{\frac{m}{2}}\right)} - {\bf H}_n (x) \quad \mbox{for }\; n\geq 0 \] \[ {\bf E}_{-n} (x) = \frac{(-1)^{n+1}}{\pi} \sum_{0 \leq m < \frac{n}{2}} \frac{\Gamma \left( n - m - \textstyle{\frac{1}{2}}\right) \left(\frac{x}{2}\right)^{-n+2m+1}}{\Gamma \left(m + \textstyle{\frac{3}{2}}\right)} - {\bf H}_{-n} (x)\, \quad \mbox{for }\; n > 0\, , \] (see 10.44 of [Wa]).
The Struve function of order $n + \frac{1}{2}$ with integer $n$ can be expressed in terms of elementary functions. For instance \begin{align*} {\bf H}_{1/2} (x) &= \left(\frac{2}{\pi x}\right)^{\frac{1}{2}} (1-\cos x)\\ {\bf H}_{3/2} (x) &= \left(\frac{x}{2\pi}\right)^{\frac{1}{2}} \left(1+\frac{2}{x^2}\right) - \left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \left(\sin x + \frac{\cos x}{x}\right) \end{align*} (cf. 10.42 of [Wa]).
For $|{\rm arg}\, x| < \pi$ and $|x|$ large we have the asymptotic expansion \[ {\bf H}_\nu (x) = Y_\nu (x) + \frac{1}{\pi} \sum_{m=0}^{k-1} \frac{\Gamma \left(m + \textstyle{\frac{1}{2}}\right)}{\Gamma \left(\nu + \textstyle{\frac{1}{2}} - m\right) \left(\textstyle{\frac{x}{2}}\right)^{2m - \nu +1}} + O \left(|x|^{\nu - 2k -1}\right)\, , \] where $Y_\nu$ is the Neumann function.
The modified Struve function is given by \[ {\bf L}_\nu (x) = \left\{\begin{array}{ll} &e^{-\frac{1}{2} \nu \pi i} {\bf H}_\nu ( ix) \quad &\mbox{if } -\pi < {\rm arg}\, z \leq \frac{\pi}{2}\\ &e^{\frac{3}{2} \nu \pi i} {\bf H}_\nu ( -ix) \quad &\mbox{if } \frac{\pi}{2} < {\rm arg}\, z \leq \pi \end{array}\right. \] and thus bears the same relation to the Struwe function ${\bf H}_\nu (x)$ as the modified Bessel function $I_\nu$ bears to the Bessel function $J_\nu$ (see Cylinder functions).
The expansion \eqref{e:expansion} translates into a corresponding expansion for the modified Struve function. We have moreover the interesting relation \[ {\bf L}_\nu (x) = I_{-\nu} (x) - \frac{2 \left(\textstyle{\frac{x}{2}}\right)^\nu}{\Gamma \left( \nu + \textstyle{\frac{1}{2}}\right) \Gamma \left(\textstyle{\frac{1}{2}}\right)} \int_0^\infty \sin (xu)\, (1+ u^2)^{-\nu - \frac{1}{2}}\, du \] which leads to the asymptotic expansion \[ {\bf L}_\nu (x) = I_{-\nu} (x) - \frac{\left(\textstyle{\frac{x}{2}}\right)^{\nu-1}}{\sqrt{\pi}\,\Gamma \left(\nu + \textstyle{\frac{1}{2}}\right)} \] for $|x|$ large.
The Struve function can be expressed in terms of a hypergeometric function of type $_1 F_2$, cf. [AS], formula (7.5).
References
[AS] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1970) |
[BE] | H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953) |
[JES] | E. Jahnke, F. Emde, F. Lösch, "Tafeln höheren Funktionen" , Teubner (1966) |
[S] | H. Struve, Ann. Physik Chemie , 17 (1882) pp. 1008–1016 |
[Wa] | G.N. Watson, "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press (1952) MR1349110 MR1570252 MR0010746 MR1520278 Zbl 0849.33001 Zbl 0174.36202 Zbl 0063.08184 |
Struve function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Struve_function&oldid=15962