Difference between revisions of "Variation of a set"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | v0961402.png | ||
+ | $#A+1 = 77 n = 0 | ||
+ | $#C+1 = 77 : ~/encyclopedia/old_files/data/V096/V.0906140 Variation of a set | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A number characterizing the $ k $- | |
+ | dimensional content of a set in $ n $- | ||
+ | dimensional Euclidean space. The zero variation $ {V _ {0} } ( E) $ | ||
+ | of a closed bounded set $ E $ | ||
+ | is the number of components of this set. | ||
+ | |||
+ | In the simplest case of the plane, the linear variation of a set $ E $( | ||
+ | i.e. the first-order variation of $ E $) | ||
+ | is the integral | ||
+ | |||
+ | $$ | ||
+ | V _ {1} ( E) = c \int\limits _ { 0 } ^ { {2 } \pi } \Phi ( \alpha , E) d \alpha | ||
+ | $$ | ||
of the function | of the function | ||
− | + | $$ | |
+ | \Phi ( \alpha , E) = \int\limits _ {\Pi _ \alpha } V _ {0} ( E \cap \Pi _ {\alpha ,z } ^ \perp ) dz , | ||
+ | $$ | ||
− | where the integration is performed over the straight line | + | where the integration is performed over the straight line $ \Pi _ \alpha $ |
+ | passing through the coordinate origin, $ \alpha $ | ||
+ | is the angle formed by $ \Pi _ \alpha $ | ||
+ | with a given axis and $ \Pi _ {\alpha , z } ^ \perp $ | ||
+ | is the straight line normal to $ \Pi _ \alpha $ | ||
+ | which intersects it at the point $ z $. | ||
+ | The normalizing constant $ c $ | ||
+ | is so chosen that the variation $ {V _ {1} } ( E) $ | ||
+ | of an interval $ E $ | ||
+ | is equal to its length. For sufficiently simple sets, e.g. for rectifiable curves, the variation of the set is equal to the [[Length|length]] of the curve. For a closed domain $ E $ | ||
+ | with a rectifiable boundary $ \Gamma $ | ||
+ | its linear variation $ {V _ {1} } ( E) $ | ||
+ | is equal to one-half the length of $ \Gamma $. | ||
+ | The second variation of $ E $( | ||
+ | i.e. the second-order variation of $ E $) | ||
+ | is the two-dimensional measure of $ E $, | ||
+ | and $ {V _ {k} } ( E) = 0 $ | ||
+ | if $ k > 2 $. | ||
− | In | + | In $ n $- |
+ | dimensional Euclidean space the variation $ {V _ {i} } ( E) $ | ||
+ | of order $ 0 \dots n $, | ||
+ | of a bounded closed set $ E $ | ||
+ | is the integral | ||
− | + | $$ | |
+ | V _ {k} ( E) = \ | ||
+ | \int\limits _ {\Omega _ {k} ^ {n} } | ||
+ | V _ {0} ( E \cap \beta ) d \mu _ \beta $$ | ||
− | of the zero variation of the intersection of | + | of the zero variation of the intersection of $ E $ |
+ | with an $ ( n - k) $- | ||
+ | dimensional plane $ \beta $ | ||
+ | in the space $ \Omega _ {k} ^ {n} $ | ||
+ | of all $ ( n - k) $- | ||
+ | dimensional planes of $ \mathbf R ^ {n} $ | ||
+ | with respect to the [[Haar measure|Haar measure]] $ d {\mu _ \beta } $; | ||
+ | normalized so that the $ k $- | ||
+ | dimensional unit cube $ J _ {k} $ | ||
+ | has variation $ {V _ {k} } ( J _ {k} ) = 1 $. | ||
− | The variation | + | The variation $ {V _ {n} } ( E) $ |
+ | is identical with the $ n $- | ||
+ | dimensional [[Lebesgue measure|Lebesgue measure]] of the set $ E $. | ||
+ | For convex bodies the (suitably normalized) set variations are identical with Minkowski's mixed volumes (cf. [[Mixed-volume theory|Mixed-volume theory]]) [[#References|[4]]]. | ||
===Properties of the variations of a set.=== | ===Properties of the variations of a set.=== | ||
− | + | 1) The variations $ {V _ {k} } ( E) $ | |
− | 1) The variations | + | for $ E \subset \mathbf R ^ {n} \subset \mathbf R ^ {n ^ \prime } $ |
+ | calculated for $ E \subset \mathbf R ^ {n} $ | ||
+ | and for $ E \subset \mathbf R ^ {n ^ \prime } $ | ||
+ | have the same value. | ||
2) The variations of a set can be inductively expressed by the formula | 2) The variations of a set can be inductively expressed by the formula | ||
− | + | $$ | |
+ | \int\limits _ {\Omega _ {k} ^ {n} } | ||
+ | V _ {i} ( E \cap \beta ) d \mu _ \beta = \ | ||
+ | c( n, k, i) V _ {k+} i ( E),\ \ | ||
+ | k+ i \leq n , | ||
+ | $$ | ||
− | where | + | where $ c ( n, k, i) $ |
+ | is the normalization constant. | ||
− | 3) | + | 3) $ {V _ {i} } ( E) = 0 $ |
+ | implies $ {V _ {i+} 1 } ( E) = 0 $. | ||
− | 4) In a certain sense, the variations of a set are not dependent, i.e. for any sequence of numbers | + | 4) In a certain sense, the variations of a set are not dependent, i.e. for any sequence of numbers $ a _ {0} \dots a _ {n} $, |
+ | where $ a _ {0} $ | ||
+ | is a positive integer, $ 0 < a _ {i} \leq \infty $( | ||
+ | $ i = 1 \dots n - 1 $), | ||
+ | $ a _ {n} = 0 $, | ||
+ | it is possible to construct a set $ E \subset \mathbf R ^ {n} $ | ||
+ | for which $ {V _ {i} } ( E) = a _ {i} $, | ||
+ | $ i = 0 \dots n $. | ||
− | 5) If | + | 5) If $ E _ {1} $ |
+ | and $ E _ {2} $ | ||
+ | do not intersect, $ V _ {i} ( E _ {1} \cup E _ {2} ) = {V _ {i} } ( E _ {1} ) + {V _ {i} } ( E _ {2} ) $. | ||
+ | In the general case, | ||
− | + | $$ | |
+ | V _ {i} ( E _ {1} \cup E _ {2} ) \leq \ | ||
+ | V _ {i} ( E _ {1} ) + V _ {i} ( E _ {2} ). | ||
+ | $$ | ||
− | For | + | For $ i = 0 \dots n - 1 $ |
+ | the variations $ V _ {i} $ | ||
+ | are not monotone, i.e. it can happen for $ E _ {1} \supset E _ {2} $ | ||
+ | that $ {V _ {i} } ( E _ {1} ) < {V _ {i} } ( E _ {2} ) $. | ||
− | 6) The variations of a set are semi-continuous, i.e. if a sequence of closed bounded sets | + | 6) The variations of a set are semi-continuous, i.e. if a sequence of closed bounded sets $ E _ {k} $ |
+ | converges (in the sense of deviation in metric) to a set $ E $, | ||
+ | then | ||
− | + | $$ | |
+ | V _ {0} ( E) \leq \ | ||
+ | {\lim\limits \inf } _ {k \rightarrow \infty } | ||
+ | V _ {0} ( E _ {n} ) , | ||
+ | $$ | ||
− | and if, in addition, the sums | + | and if, in addition, the sums $ {V _ {0} } ( E _ {k} ) + \dots + {V _ {i-} 1 } ( E _ {k} ) $ |
+ | are uniformly bounded, then | ||
− | + | $$ | |
+ | V _ {i} ( E) \leq \ | ||
+ | {\lim\limits \inf } _ {k \rightarrow \infty } V _ {i} ( E _ {k} ) ,\ \ | ||
+ | i = 1 \dots n . | ||
+ | $$ | ||
− | 7) The variation | + | 7) The variation $ {V _ {k} } ( E) $ |
+ | becomes identical with the $ k $- | ||
+ | dimensional [[Hausdorff measure|Hausdorff measure]] if $ {V _ {k+} 1 } ( E) = 0 $ | ||
+ | and if | ||
− | < | + | $$ |
+ | V _ {0} ( E) + \dots + V _ {k} ( E) < \infty . | ||
+ | $$ | ||
These conditions are met, for example, by twice-differentiable manifolds. | These conditions are met, for example, by twice-differentiable manifolds. | ||
Line 58: | Line 158: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.G. Vitushkin, "On higher-dimensional variations" , Moscow (1955) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.G. Vitushkin, "Estimation of the complexity of the tabulation problem" , Moscow (1959) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.G. Vitushkin, "Proof of the upper semicontinuity of a set variation" ''Soviet Math. Dokl.'' , '''7''' : 1 (1966) pp. 206–209 ''Dokl. Akad. Nauk SSSR'' , '''166''' : 5 (1966) pp. 1022–1025</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.M. Leontovich, M.S. Mel'nikov, "On the boundedness of the variations of a manifold" ''Trans. Moscow Math Soc.'' , '''14''' (1965) pp. 333–368 ''Trudy Moskov. Mat. Obshch.'' , '''14''' (1965) pp. 306–337</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> L.D. Ivanov, "Geometric properties of sets with finite variation" ''Math. USSR-Sb.'' , '''1''' : 2 (1967) pp. 405–427 ''Mat. Sb.'' , '''72 (114)''' : 3 (1967) pp. 445–470</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> L.D. Ivanov, "On the local structure of sets with finite variation" ''Math. USSR-Sb.'' , '''7''' : 1 (1969) pp. 79–93 ''Mat. Sb.'' , '''78 (120)''' : 1 (1969) pp. 85–100</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.G. Vitushkin, "On higher-dimensional variations" , Moscow (1955) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.G. Vitushkin, "Estimation of the complexity of the tabulation problem" , Moscow (1959) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.G. Vitushkin, "Proof of the upper semicontinuity of a set variation" ''Soviet Math. Dokl.'' , '''7''' : 1 (1966) pp. 206–209 ''Dokl. Akad. Nauk SSSR'' , '''166''' : 5 (1966) pp. 1022–1025</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.M. Leontovich, M.S. Mel'nikov, "On the boundedness of the variations of a manifold" ''Trans. Moscow Math Soc.'' , '''14''' (1965) pp. 333–368 ''Trudy Moskov. Mat. Obshch.'' , '''14''' (1965) pp. 306–337</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> L.D. Ivanov, "Geometric properties of sets with finite variation" ''Math. USSR-Sb.'' , '''1''' : 2 (1967) pp. 405–427 ''Mat. Sb.'' , '''72 (114)''' : 3 (1967) pp. 445–470</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> L.D. Ivanov, "On the local structure of sets with finite variation" ''Math. USSR-Sb.'' , '''7''' : 1 (1969) pp. 79–93 ''Mat. Sb.'' , '''78 (120)''' : 1 (1969) pp. 85–100</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Cf. also [[Content|Content]] and [[Variation of a function|Variation of a function]]. | Cf. also [[Content|Content]] and [[Variation of a function|Variation of a function]]. |
Latest revision as of 08:27, 6 June 2020
A number characterizing the $ k $-
dimensional content of a set in $ n $-
dimensional Euclidean space. The zero variation $ {V _ {0} } ( E) $
of a closed bounded set $ E $
is the number of components of this set.
In the simplest case of the plane, the linear variation of a set $ E $( i.e. the first-order variation of $ E $) is the integral
$$ V _ {1} ( E) = c \int\limits _ { 0 } ^ { {2 } \pi } \Phi ( \alpha , E) d \alpha $$
of the function
$$ \Phi ( \alpha , E) = \int\limits _ {\Pi _ \alpha } V _ {0} ( E \cap \Pi _ {\alpha ,z } ^ \perp ) dz , $$
where the integration is performed over the straight line $ \Pi _ \alpha $ passing through the coordinate origin, $ \alpha $ is the angle formed by $ \Pi _ \alpha $ with a given axis and $ \Pi _ {\alpha , z } ^ \perp $ is the straight line normal to $ \Pi _ \alpha $ which intersects it at the point $ z $. The normalizing constant $ c $ is so chosen that the variation $ {V _ {1} } ( E) $ of an interval $ E $ is equal to its length. For sufficiently simple sets, e.g. for rectifiable curves, the variation of the set is equal to the length of the curve. For a closed domain $ E $ with a rectifiable boundary $ \Gamma $ its linear variation $ {V _ {1} } ( E) $ is equal to one-half the length of $ \Gamma $. The second variation of $ E $( i.e. the second-order variation of $ E $) is the two-dimensional measure of $ E $, and $ {V _ {k} } ( E) = 0 $ if $ k > 2 $.
In $ n $- dimensional Euclidean space the variation $ {V _ {i} } ( E) $ of order $ 0 \dots n $, of a bounded closed set $ E $ is the integral
$$ V _ {k} ( E) = \ \int\limits _ {\Omega _ {k} ^ {n} } V _ {0} ( E \cap \beta ) d \mu _ \beta $$
of the zero variation of the intersection of $ E $ with an $ ( n - k) $- dimensional plane $ \beta $ in the space $ \Omega _ {k} ^ {n} $ of all $ ( n - k) $- dimensional planes of $ \mathbf R ^ {n} $ with respect to the Haar measure $ d {\mu _ \beta } $; normalized so that the $ k $- dimensional unit cube $ J _ {k} $ has variation $ {V _ {k} } ( J _ {k} ) = 1 $.
The variation $ {V _ {n} } ( E) $ is identical with the $ n $- dimensional Lebesgue measure of the set $ E $. For convex bodies the (suitably normalized) set variations are identical with Minkowski's mixed volumes (cf. Mixed-volume theory) [4].
Properties of the variations of a set.
1) The variations $ {V _ {k} } ( E) $ for $ E \subset \mathbf R ^ {n} \subset \mathbf R ^ {n ^ \prime } $ calculated for $ E \subset \mathbf R ^ {n} $ and for $ E \subset \mathbf R ^ {n ^ \prime } $ have the same value.
2) The variations of a set can be inductively expressed by the formula
$$ \int\limits _ {\Omega _ {k} ^ {n} } V _ {i} ( E \cap \beta ) d \mu _ \beta = \ c( n, k, i) V _ {k+} i ( E),\ \ k+ i \leq n , $$
where $ c ( n, k, i) $ is the normalization constant.
3) $ {V _ {i} } ( E) = 0 $ implies $ {V _ {i+} 1 } ( E) = 0 $.
4) In a certain sense, the variations of a set are not dependent, i.e. for any sequence of numbers $ a _ {0} \dots a _ {n} $, where $ a _ {0} $ is a positive integer, $ 0 < a _ {i} \leq \infty $( $ i = 1 \dots n - 1 $), $ a _ {n} = 0 $, it is possible to construct a set $ E \subset \mathbf R ^ {n} $ for which $ {V _ {i} } ( E) = a _ {i} $, $ i = 0 \dots n $.
5) If $ E _ {1} $ and $ E _ {2} $ do not intersect, $ V _ {i} ( E _ {1} \cup E _ {2} ) = {V _ {i} } ( E _ {1} ) + {V _ {i} } ( E _ {2} ) $. In the general case,
$$ V _ {i} ( E _ {1} \cup E _ {2} ) \leq \ V _ {i} ( E _ {1} ) + V _ {i} ( E _ {2} ). $$
For $ i = 0 \dots n - 1 $ the variations $ V _ {i} $ are not monotone, i.e. it can happen for $ E _ {1} \supset E _ {2} $ that $ {V _ {i} } ( E _ {1} ) < {V _ {i} } ( E _ {2} ) $.
6) The variations of a set are semi-continuous, i.e. if a sequence of closed bounded sets $ E _ {k} $ converges (in the sense of deviation in metric) to a set $ E $, then
$$ V _ {0} ( E) \leq \ {\lim\limits \inf } _ {k \rightarrow \infty } V _ {0} ( E _ {n} ) , $$
and if, in addition, the sums $ {V _ {0} } ( E _ {k} ) + \dots + {V _ {i-} 1 } ( E _ {k} ) $ are uniformly bounded, then
$$ V _ {i} ( E) \leq \ {\lim\limits \inf } _ {k \rightarrow \infty } V _ {i} ( E _ {k} ) ,\ \ i = 1 \dots n . $$
7) The variation $ {V _ {k} } ( E) $ becomes identical with the $ k $- dimensional Hausdorff measure if $ {V _ {k+} 1 } ( E) = 0 $ and if
$$ V _ {0} ( E) + \dots + V _ {k} ( E) < \infty . $$
These conditions are met, for example, by twice-differentiable manifolds.
The concept of the variation of a set arose in the context of solutions of the Cauchy–Riemann system, and its ultimate formulation is due to A.G. Vitushkin. The set variations proved to be a useful tool in solving certain problems in analysis, in particular that of superposition of functions of several variables [1], and also in approximation problems [2].
References
[1] | A.G. Vitushkin, "On higher-dimensional variations" , Moscow (1955) (In Russian) |
[2] | A.G. Vitushkin, "Estimation of the complexity of the tabulation problem" , Moscow (1959) (In Russian) |
[3] | A.G. Vitushkin, "Proof of the upper semicontinuity of a set variation" Soviet Math. Dokl. , 7 : 1 (1966) pp. 206–209 Dokl. Akad. Nauk SSSR , 166 : 5 (1966) pp. 1022–1025 |
[4] | A.M. Leontovich, M.S. Mel'nikov, "On the boundedness of the variations of a manifold" Trans. Moscow Math Soc. , 14 (1965) pp. 333–368 Trudy Moskov. Mat. Obshch. , 14 (1965) pp. 306–337 |
[5] | L.D. Ivanov, "Geometric properties of sets with finite variation" Math. USSR-Sb. , 1 : 2 (1967) pp. 405–427 Mat. Sb. , 72 (114) : 3 (1967) pp. 445–470 |
[6] | L.D. Ivanov, "On the local structure of sets with finite variation" Math. USSR-Sb. , 7 : 1 (1969) pp. 79–93 Mat. Sb. , 78 (120) : 1 (1969) pp. 85–100 |
Comments
Cf. also Content and Variation of a function.
Variation of a set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Variation_of_a_set&oldid=15814