Namespaces
Variants
Actions

Difference between revisions of "Egorov system of surfaces"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A tri-orthogonal system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e0351101.png" /> consisting of so-called potential surfaces (cf. [[Potential net|Potential net]]), named after D.F. Egorov, who in 1901 (see [[#References|[1]]]) considered their general theory in detail (under the name of potential systems) and gave numerous examples of systems of this type. An Egorov system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e0351102.png" /> can be defined as a system admitting a (one-parameter) group of transformations taking <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e0351103.png" /> into itself in such a way that the normals at corresponding points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e0351104.png" /> remain parallel. The stationary flow of a fluid with a velocity potential and carrying the surfaces of an Egorov system provides a mechanical interpretation of this group.
+
<!--
 +
e0351101.png
 +
$#A+1 = 46 n = 0
 +
$#C+1 = 46 : ~/encyclopedia/old_files/data/E035/E.0305110 Egorov system of surfaces
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A tri-orthogonal system  $  \Sigma $
 +
consisting of so-called potential surfaces (cf. [[Potential net|Potential net]]), named after D.F. Egorov, who in 1901 (see [[#References|[1]]]) considered their general theory in detail (under the name of potential systems) and gave numerous examples of systems of this type. An Egorov system $  \Sigma $
 +
can be defined as a system admitting a (one-parameter) group of transformations taking $  \Sigma $
 +
into itself in such a way that the normals at corresponding points of $  \Sigma $
 +
remain parallel. The stationary flow of a fluid with a velocity potential and carrying the surfaces of an Egorov system provides a mechanical interpretation of this group.
  
 
Let
 
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e0351105.png" /></td> </tr></table>
+
$$
 +
u  ^ {i} ( x , y , z)  = \textrm{ const } ,\  i = 1 , 2 , 3,
 +
$$
 +
 
 +
be the equations of the surfaces forming an Egorov system  $  \Sigma $;  
 +
let  $  H _ {i} $
 +
be the [[Lamé coefficients|Lamé coefficients]] appearing in the expression for the square of the line element of the space in the curvilinear coordinates  $  \{ u  ^ {i} \} $:
  
be the equations of the surfaces forming an Egorov system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e0351106.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e0351107.png" /> be the [[Lamé coefficients|Lamé coefficients]] appearing in the expression for the square of the line element of the space in the curvilinear coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e0351108.png" />:
+
$$
 +
ds  ^ {2}  = \sum _ { i= } 1 ^ { 3 }  H _ {1}  ^ {2} ( du  ^ {i} )  ^ {2} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e0351109.png" /></td> </tr></table>
+
let  $  P _ {i} $
 +
be the distance between the origin and the three tangent planes to  $  \Sigma $,
 +
let  $  R _ {ik} $
 +
be the principal radii of curvature of the surfaces  $  u  ^ {i} = \textrm{ const } $,
 +
corresponding to the principal direction  $  H _ {k}  du  ^ {k} $,
 +
and let  $  \beta _ {ik} = - H _ {k} / R _ {ik} $
 +
be the quantities appearing in the expression for the line elements  $  d \sigma _ {i} $
 +
of the spherical images (cf. [[Spherical map|Spherical map]]) of the surfaces:
  
let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511010.png" /> be the distance between the origin and the three tangent planes to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511011.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511012.png" /> be the principal radii of curvature of the surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511013.png" />, corresponding to the principal direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511014.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511015.png" /> be the quantities appearing in the expression for the line elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511016.png" /> of the spherical images (cf. [[Spherical map|Spherical map]]) of the surfaces:
+
$$
 +
( d \sigma _ {i} )  ^ {2}  = \beta _ {ik}  ^ {2} ( du  ^ {k} )  ^ {2} +
 +
\beta _ {il}  ^ {2} ( du  ^ {l} )  ^ {2} ,\  i \neq k \neq l .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511017.png" /></td> </tr></table>
+
The functions  $  P _ {i} $
 +
and  $  H _ {i} $
 +
satisfy the same system of equations:
  
The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511019.png" /> satisfy the same system of equations:
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511020.png" /></td> </tr></table>
+
\frac{\partial  \theta _ {i} }{\partial  u  ^ {k} }
 +
  = \beta _ {ik} \theta _ {k} .
 +
$$
  
The solutions of these equations define two other Egorov systems, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511022.png" />, with the same spherical images, for which
+
The solutions of these equations define two other Egorov systems, $  \Sigma _ {1} $
 +
and $  \Sigma _ {-} 1 $,  
 +
with the same spherical images, for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511023.png" /></td> </tr></table>
+
$$
 +
P _ {i}  ^ {(} 1)  = H _ {i} ,\  H _ {i}  ^ {(-} 1)  = P _ {i} .
 +
$$
  
 
Continuing this transformation in both directions gives a series of Egorov systems (the Egorov series)
 
Continuing this transformation in both directions gives a series of Egorov systems (the Egorov series)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511024.png" /></td> </tr></table>
+
$$
 +
{} \dots, \Sigma _ {-} 2 , \Sigma _ {-} 1 , \Sigma , \Sigma _ {1} , \Sigma _ {2} ,\dots
 +
$$
  
with the same spherical image, in which each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511025.png" /> is obtained from the previous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511026.png" /> by the formula
+
with the same spherical image, in which each $  \Sigma _ {k+} 1 $
 +
is obtained from the previous $  \Sigma _ {k} $
 +
by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511027.png" /></td> </tr></table>
+
$$
 +
P _ {i}  ^ {(} k+ 1)  = H _ {i}  ^ {(} k) .
 +
$$
  
In general, the search for the spherical image of an Egorov system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511028.png" /> reduces to the investigation of a potential system on the sphere: Any such system may be taken as the spherical image of one of the three families forming <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511029.png" />.
+
In general, the search for the spherical image of an Egorov system $  \Sigma $
 +
reduces to the investigation of a potential system on the sphere: Any such system may be taken as the spherical image of one of the three families forming $  \Sigma $.
  
An Egorov system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511030.png" /> is characterized by the fact that
+
An Egorov system $  \Sigma $
 +
is characterized by the fact that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511031.png" /></td> </tr></table>
+
$$
 +
H _ {i}  ^ {2}  =
 +
\frac{\partial  \omega }{\partial  u  ^ {i} }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511032.png" /> is a function having the meaning of velocity potential for the corresponding flow, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511033.png" /> are the potential surfaces. Thus, for any potential surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511034.png" />, there is an Egorov system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511035.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511036.png" />. The tangent to the line of intersection of any surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511037.png" /> with the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511038.png" /> at any point is parallel to the ray <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511039.png" /> joining the centres of geodesic curvature of the lines of curvature of the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511040.png" />; at each point of space the three rays <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511041.png" /> are parallel to a common plane — the tangent plane to the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511042.png" />, and the osculating planes of the coordinate lines pass through a common straight line. The quantities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511044.png" /> for an Egorov system satisfy the relations:
+
where $  \omega $
 +
is a function having the meaning of velocity potential for the corresponding flow, that is, $  u  ^ {i} = \textrm{ const } $
 +
are the potential surfaces. Thus, for any potential surface $  S $,  
 +
there is an Egorov system $  \Sigma $
 +
containing $  S $.  
 +
The tangent to the line of intersection of any surface $  \omega = \textrm{ const } $
 +
with the surface $  u  ^ {i} = \textrm{ const } $
 +
at any point is parallel to the ray $  l  ^ {i} $
 +
joining the centres of geodesic curvature of the lines of curvature of the surface $  u  ^ {i} = \textrm{ const } $;  
 +
at each point of space the three rays $  l  ^ {1} , l  ^ {2} , l  ^ {3} $
 +
are parallel to a common plane — the tangent plane to the surface $  \omega = \textrm{ const } $,  
 +
and the osculating planes of the coordinate lines pass through a common straight line. The quantities $  \beta _ {ik} $
 +
and $  R _ {ik} $
 +
for an Egorov system satisfy the relations:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511045.png" /></td> </tr></table>
+
$$
 +
R _ {12} R _ {23} R _ {31}  = R _ {13} R _ {32} R _ {21} ,\  \beta _ {ik}  = \beta _ {ki}  $$
  
(the symmetry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511046.png" /> is also a necessary and sufficient condition for a tri-orthogonal system to be an Egorov system).
+
(the symmetry of $  \beta _ {ik} $
 +
is also a necessary and sufficient condition for a tri-orthogonal system to be an Egorov system).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.F. Egorov,  "Papers in differential geometry" , Moscow  (1970)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.F. Egorov,  "Papers in differential geometry" , Moscow  (1970)  (In Russian)</TD></TR></table>

Revision as of 19:37, 5 June 2020


A tri-orthogonal system $ \Sigma $ consisting of so-called potential surfaces (cf. Potential net), named after D.F. Egorov, who in 1901 (see [1]) considered their general theory in detail (under the name of potential systems) and gave numerous examples of systems of this type. An Egorov system $ \Sigma $ can be defined as a system admitting a (one-parameter) group of transformations taking $ \Sigma $ into itself in such a way that the normals at corresponding points of $ \Sigma $ remain parallel. The stationary flow of a fluid with a velocity potential and carrying the surfaces of an Egorov system provides a mechanical interpretation of this group.

Let

$$ u ^ {i} ( x , y , z) = \textrm{ const } ,\ i = 1 , 2 , 3, $$

be the equations of the surfaces forming an Egorov system $ \Sigma $; let $ H _ {i} $ be the Lamé coefficients appearing in the expression for the square of the line element of the space in the curvilinear coordinates $ \{ u ^ {i} \} $:

$$ ds ^ {2} = \sum _ { i= } 1 ^ { 3 } H _ {1} ^ {2} ( du ^ {i} ) ^ {2} , $$

let $ P _ {i} $ be the distance between the origin and the three tangent planes to $ \Sigma $, let $ R _ {ik} $ be the principal radii of curvature of the surfaces $ u ^ {i} = \textrm{ const } $, corresponding to the principal direction $ H _ {k} du ^ {k} $, and let $ \beta _ {ik} = - H _ {k} / R _ {ik} $ be the quantities appearing in the expression for the line elements $ d \sigma _ {i} $ of the spherical images (cf. Spherical map) of the surfaces:

$$ ( d \sigma _ {i} ) ^ {2} = \beta _ {ik} ^ {2} ( du ^ {k} ) ^ {2} + \beta _ {il} ^ {2} ( du ^ {l} ) ^ {2} ,\ i \neq k \neq l . $$

The functions $ P _ {i} $ and $ H _ {i} $ satisfy the same system of equations:

$$ \frac{\partial \theta _ {i} }{\partial u ^ {k} } = \beta _ {ik} \theta _ {k} . $$

The solutions of these equations define two other Egorov systems, $ \Sigma _ {1} $ and $ \Sigma _ {-} 1 $, with the same spherical images, for which

$$ P _ {i} ^ {(} 1) = H _ {i} ,\ H _ {i} ^ {(-} 1) = P _ {i} . $$

Continuing this transformation in both directions gives a series of Egorov systems (the Egorov series)

$$ {} \dots, \Sigma _ {-} 2 , \Sigma _ {-} 1 , \Sigma , \Sigma _ {1} , \Sigma _ {2} ,\dots $$

with the same spherical image, in which each $ \Sigma _ {k+} 1 $ is obtained from the previous $ \Sigma _ {k} $ by the formula

$$ P _ {i} ^ {(} k+ 1) = H _ {i} ^ {(} k) . $$

In general, the search for the spherical image of an Egorov system $ \Sigma $ reduces to the investigation of a potential system on the sphere: Any such system may be taken as the spherical image of one of the three families forming $ \Sigma $.

An Egorov system $ \Sigma $ is characterized by the fact that

$$ H _ {i} ^ {2} = \frac{\partial \omega }{\partial u ^ {i} } , $$

where $ \omega $ is a function having the meaning of velocity potential for the corresponding flow, that is, $ u ^ {i} = \textrm{ const } $ are the potential surfaces. Thus, for any potential surface $ S $, there is an Egorov system $ \Sigma $ containing $ S $. The tangent to the line of intersection of any surface $ \omega = \textrm{ const } $ with the surface $ u ^ {i} = \textrm{ const } $ at any point is parallel to the ray $ l ^ {i} $ joining the centres of geodesic curvature of the lines of curvature of the surface $ u ^ {i} = \textrm{ const } $; at each point of space the three rays $ l ^ {1} , l ^ {2} , l ^ {3} $ are parallel to a common plane — the tangent plane to the surface $ \omega = \textrm{ const } $, and the osculating planes of the coordinate lines pass through a common straight line. The quantities $ \beta _ {ik} $ and $ R _ {ik} $ for an Egorov system satisfy the relations:

$$ R _ {12} R _ {23} R _ {31} = R _ {13} R _ {32} R _ {21} ,\ \beta _ {ik} = \beta _ {ki} $$

(the symmetry of $ \beta _ {ik} $ is also a necessary and sufficient condition for a tri-orthogonal system to be an Egorov system).

References

[1] D.F. Egorov, "Papers in differential geometry" , Moscow (1970) (In Russian)
How to Cite This Entry:
Egorov system of surfaces. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Egorov_system_of_surfaces&oldid=15662
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article