Difference between revisions of "Gell-Mann matrices"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g1101201.png | ||
+ | $#A+1 = 9 n = 0 | ||
+ | $#C+1 = 9 : ~/encyclopedia/old_files/data/G110/G.1100120 Gell\AAnMann matrices | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The Gell-Mann matrices are denoted by $ \lambda _ {1} \dots \lambda _ {8} $. | |
+ | They form a family of traceless Hermitian $ ( 3 \times 3 ) $- | ||
+ | matrices, orthonormalized as follows: $ { \mathop{\rm Tr} } ( \lambda _ {j} \lambda _ {k} ) = 2 \delta _ {jk } $. | ||
+ | When multiplied by the complex unit they form a basis in the [[Lie algebra|Lie algebra]] $ \mathfrak s \mathfrak u ( 3 ) $, | ||
+ | in analogy with the Pauli matrices and the Lie algebra $ \mathfrak s \mathfrak u ( 2 ) $. | ||
+ | Their explicit form is [[#References|[a1]]]: | ||
− | + | $$ | |
+ | \lambda _ {1} = \left ( | ||
− | + | \begin{array}{ccc} | |
+ | 0 & 1 & 0 \\ | ||
+ | 1 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) , \lambda _ {2} = \left ( | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | 0 &- i & 0 \\ | ||
+ | i & 0 & 0 \\ | ||
+ | 0 & 0 & 0 \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \lambda _ {3} = \left ( | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | 1 & 0 & 0 \\ | ||
+ | 0 &- 1 & 0 \\ | ||
+ | 0 & 0 & 0 \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) , \lambda _ {4} = \left ( | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | 0 & 0 & 1 \\ | ||
+ | 0 & 0 & 0 \\ | ||
+ | 1 & 0 & 0 \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \lambda _ {5} = \left ( | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | 0 & 0 &- i \\ | ||
+ | 0 & 0 & 0 \\ | ||
+ | i & 0 & 0 \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) , \lambda _ {6} = \left ( | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 1 \\ | ||
+ | 0 & 1 & 0 \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \lambda _ {7} = \left ( | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | 0 & 0 & 0 \\ | ||
+ | 0 & 0 &- i \\ | ||
+ | 0 & i & 0 \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) , \lambda _ {8} = { | ||
+ | \frac{1}{\sqrt 3 } | ||
+ | } \left ( | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | 1 & 0 & 0 \\ | ||
+ | 0 & 1 & 0 \\ | ||
+ | 0 & 0 &- 2 \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Gell-Mann, Y. Ne'eman, "The eightfold way" , Benjamin (1964)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Gell-Mann, Y. Ne'eman, "The eightfold way" , Benjamin (1964)</TD></TR></table> |
Latest revision as of 19:41, 5 June 2020
The Gell-Mann matrices are denoted by $ \lambda _ {1} \dots \lambda _ {8} $.
They form a family of traceless Hermitian $ ( 3 \times 3 ) $-
matrices, orthonormalized as follows: $ { \mathop{\rm Tr} } ( \lambda _ {j} \lambda _ {k} ) = 2 \delta _ {jk } $.
When multiplied by the complex unit they form a basis in the Lie algebra $ \mathfrak s \mathfrak u ( 3 ) $,
in analogy with the Pauli matrices and the Lie algebra $ \mathfrak s \mathfrak u ( 2 ) $.
Their explicit form is [a1]:
$$ \lambda _ {1} = \left ( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right ) , \lambda _ {2} = \left ( \begin{array}{ccc} 0 &- i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right ) , $$
$$ \lambda _ {3} = \left ( \begin{array}{ccc} 1 & 0 & 0 \\ 0 &- 1 & 0 \\ 0 & 0 & 0 \\ \end{array} \right ) , \lambda _ {4} = \left ( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \end{array} \right ) , $$
$$ \lambda _ {5} = \left ( \begin{array}{ccc} 0 & 0 &- i \\ 0 & 0 & 0 \\ i & 0 & 0 \\ \end{array} \right ) , \lambda _ {6} = \left ( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array} \right ) , $$
$$ \lambda _ {7} = \left ( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 &- i \\ 0 & i & 0 \\ \end{array} \right ) , \lambda _ {8} = { \frac{1}{\sqrt 3 } } \left ( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 &- 2 \\ \end{array} \right ) . $$
References
[a1] | M. Gell-Mann, Y. Ne'eman, "The eightfold way" , Benjamin (1964) |
Gell-Mann matrices. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gell-Mann_matrices&oldid=15618