Namespaces
Variants
Actions

Difference between revisions of "Saddle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
s0830201.png
 +
$#A+1 = 46 n = 0
 +
$#C+1 = 46 : ~/encyclopedia/old_files/data/S083/S.0803020 Saddle
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A type of arrangement of the trajectories of an [[Autonomous system|autonomous system]] of planar ordinary differential equations
 
A type of arrangement of the trajectories of an [[Autonomous system|autonomous system]] of planar ordinary differential equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s0830201.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
\dot{x}  = f ( x),\ \
 +
x \in \mathbf R  ^ {2} ,\ \
 +
f:  G \subset  \mathbf R  ^ {2} \rightarrow \mathbf R  ^ {2} ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s0830202.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s0830203.png" /> is the domain of uniqueness, in a neighbourhood of a singular point ([[Equilibrium position|equilibrium position]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s0830204.png" />. This type is characterized as follows. There is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s0830205.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s0830206.png" /> such that for all trajectories of the system that start in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s0830207.png" />, both the positive and negative semi-trajectories are diverging (as time passes they leave any compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s0830208.png" />). The exceptions are four trajectories, called the separatrices of the saddle. For two of these, the negative semi-trajectories are diverging and the positive semi-trajectories converge to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s0830209.png" />, and for the other two the situation is just the opposite. The first two separatrices are called stable, and the second two, unstable. The stable separatrices, completed by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302010.png" />, form a smooth curve through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302011.png" /> — the stable manifold of the saddle. The unstable separatrices, together with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302012.png" />, form the smooth unstable manifold of the saddle. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302013.png" /> is also called the saddle.
+
$  f \in C ( G) $,  
 +
where $  G $
 +
is the domain of uniqueness, in a neighbourhood of a singular point ([[Equilibrium position|equilibrium position]]) $  x _ {0} $.  
 +
This type is characterized as follows. There is a neighbourhood $  U $
 +
of $  x _ {0} $
 +
such that for all trajectories of the system that start in $  U \setminus  \{ x _ {0} \} $,  
 +
both the positive and negative semi-trajectories are diverging (as time passes they leave any compact set $  V \subset  U $).  
 +
The exceptions are four trajectories, called the separatrices of the saddle. For two of these, the negative semi-trajectories are diverging and the positive semi-trajectories converge to $  x _ {0} $,  
 +
and for the other two the situation is just the opposite. The first two separatrices are called stable, and the second two, unstable. The stable separatrices, completed by $  x _ {0} $,  
 +
form a smooth curve through $  x _ {0} $—  
 +
the stable manifold of the saddle. The unstable separatrices, together with $  x _ {0} $,  
 +
form the smooth unstable manifold of the saddle. The point $  x _ {0} $
 +
is also called the saddle.
  
The saddle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302014.png" /> is unstable in the sense of Lyapunov (cf. [[Lyapunov stability|Lyapunov stability]]). Its Poincaré index is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302015.png" /> (cf. [[Singular point|Singular point]]). For a system (*) of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302016.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302017.png" />) with a non-zero matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302018.png" />, a stationary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302019.png" /> is a saddle when the eigenvalues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302021.png" /> satisfy the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302022.png" /> (a simple saddle; see Fig. a, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302023.png" />) but it can also be a saddle when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302024.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302025.png" />.
+
The saddle $  x _ {0} $
 +
is unstable in the sense of Lyapunov (cf. [[Lyapunov stability|Lyapunov stability]]). Its Poincaré index is $  - 1 $(
 +
cf. [[Singular point|Singular point]]). For a system (*) of class $  C  ^ {1} $(
 +
$  f \in C  ^ {1} ( G) $)  
 +
with a non-zero matrix $  A = f ^ { \prime } ( x _ {0} ) $,  
 +
a stationary point $  x _ {0} $
 +
is a saddle when the eigenvalues $  \lambda _ {1} , \lambda _ {2} $
 +
of $  A $
 +
satisfy the condition $  \lambda _ {1} \lambda _ {2} < 0 $(
 +
a simple saddle; see Fig. a, where $  x _ {0} = 0 $)  
 +
but it can also be a saddle when $  \lambda _ {1} = 0 \neq \lambda _ {2} $,  
 +
or $  \lambda _ {1} = \lambda _ {2} = 0 $.
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s083020a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s083020a.gif" />
Line 11: Line 50:
 
Figure: s083020a
 
Figure: s083020a
  
In any of these cases the separatrices of the saddle are tangential at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302026.png" /> to the directions defined by the eigenvectors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302027.png" />.
+
In any of these cases the separatrices of the saddle are tangential at $  x _ {0} $
 +
to the directions defined by the eigenvectors of $  A $.
  
If the system (*) is linear (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302028.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302029.png" /> is a constant matrix with eigenvalues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302031.png" />), then a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302032.png" /> of it is a saddle only when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302033.png" />. In this case the separatrices of the saddle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302034.png" /> are rectilinear, and all the other trajectories (distinct from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302035.png" />) are affine images of the hyperbolas of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302037.png" /> (Fig. b).
+
If the system (*) is linear ( $  f ( x) = A ( x - x _ {0} ) $,  
 +
where $  A $
 +
is a constant matrix with eigenvalues $  \lambda _ {1} $
 +
and $  \lambda _ {2} $),  
 +
then a point $  x _ {0} $
 +
of it is a saddle only when $  \lambda _ {1} \lambda _ {2} < 0 $.  
 +
In this case the separatrices of the saddle $  x _ {0} $
 +
are rectilinear, and all the other trajectories (distinct from $  x _ {0} $)  
 +
are affine images of the hyperbolas of the form $  x _ {2} = c  | x _ {1} | ^ {\lambda _ {2} / \lambda _ {1} } $,  
 +
$  c \in \mathbf R \setminus  \{ 0 \} $(
 +
Fig. b).
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s083020b.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s083020b.gif" />
Line 19: Line 69:
 
Figure: s083020b
 
Figure: s083020b
  
The term  "saddle"  is also used for any of the arrangements of the trajectories of the system (*) in a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302038.png" /> of an isolated stationary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302039.png" />, where only a finite number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302040.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302041.png" />) of trajectories in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302042.png" /> approaches <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302043.png" /> and where each of them, completed by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302044.png" />, touches at this point in a definite direction (an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302046.png" />-separatrix saddle). Certain types of stationary points of autonomous systems of ordinary differential equations of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302047.png" /> are also called saddles. For references, see [[Singular point|Singular point]] of a differential equation.
+
The term  "saddle"  is also used for any of the arrangements of the trajectories of the system (*) in a neighbourhood $  U $
 
+
of an isolated stationary point $  x _ {0} $,  
 
+
where only a finite number $  m $(
 +
$  \geq  2 $)  
 +
of trajectories in $  U \setminus  \{ 0 \} $
 +
approaches $  x _ {0} $
 +
and where each of them, completed by $  x _ {0} $,  
 +
touches at this point in a definite direction (an $  m $-
 +
separatrix saddle). Certain types of stationary points of autonomous systems of ordinary differential equations of order $  n \geq  3 $
 +
are also called saddles. For references, see [[Singular point|Singular point]] of a differential equation.
  
 
====Comments====
 
====Comments====
 
Cf. also [[Hyperbolic point|Hyperbolic point]] and [[Hyperbolic set|Hyperbolic set]] and the references given there.
 
Cf. also [[Hyperbolic point|Hyperbolic point]] and [[Hyperbolic set|Hyperbolic set]] and the references given there.

Latest revision as of 08:12, 6 June 2020


A type of arrangement of the trajectories of an autonomous system of planar ordinary differential equations

$$ \tag{* } \dot{x} = f ( x),\ \ x \in \mathbf R ^ {2} ,\ \ f: G \subset \mathbf R ^ {2} \rightarrow \mathbf R ^ {2} , $$

$ f \in C ( G) $, where $ G $ is the domain of uniqueness, in a neighbourhood of a singular point (equilibrium position) $ x _ {0} $. This type is characterized as follows. There is a neighbourhood $ U $ of $ x _ {0} $ such that for all trajectories of the system that start in $ U \setminus \{ x _ {0} \} $, both the positive and negative semi-trajectories are diverging (as time passes they leave any compact set $ V \subset U $). The exceptions are four trajectories, called the separatrices of the saddle. For two of these, the negative semi-trajectories are diverging and the positive semi-trajectories converge to $ x _ {0} $, and for the other two the situation is just the opposite. The first two separatrices are called stable, and the second two, unstable. The stable separatrices, completed by $ x _ {0} $, form a smooth curve through $ x _ {0} $— the stable manifold of the saddle. The unstable separatrices, together with $ x _ {0} $, form the smooth unstable manifold of the saddle. The point $ x _ {0} $ is also called the saddle.

The saddle $ x _ {0} $ is unstable in the sense of Lyapunov (cf. Lyapunov stability). Its Poincaré index is $ - 1 $( cf. Singular point). For a system (*) of class $ C ^ {1} $( $ f \in C ^ {1} ( G) $) with a non-zero matrix $ A = f ^ { \prime } ( x _ {0} ) $, a stationary point $ x _ {0} $ is a saddle when the eigenvalues $ \lambda _ {1} , \lambda _ {2} $ of $ A $ satisfy the condition $ \lambda _ {1} \lambda _ {2} < 0 $( a simple saddle; see Fig. a, where $ x _ {0} = 0 $) but it can also be a saddle when $ \lambda _ {1} = 0 \neq \lambda _ {2} $, or $ \lambda _ {1} = \lambda _ {2} = 0 $.

Figure: s083020a

In any of these cases the separatrices of the saddle are tangential at $ x _ {0} $ to the directions defined by the eigenvectors of $ A $.

If the system (*) is linear ( $ f ( x) = A ( x - x _ {0} ) $, where $ A $ is a constant matrix with eigenvalues $ \lambda _ {1} $ and $ \lambda _ {2} $), then a point $ x _ {0} $ of it is a saddle only when $ \lambda _ {1} \lambda _ {2} < 0 $. In this case the separatrices of the saddle $ x _ {0} $ are rectilinear, and all the other trajectories (distinct from $ x _ {0} $) are affine images of the hyperbolas of the form $ x _ {2} = c | x _ {1} | ^ {\lambda _ {2} / \lambda _ {1} } $, $ c \in \mathbf R \setminus \{ 0 \} $( Fig. b).

Figure: s083020b

The term "saddle" is also used for any of the arrangements of the trajectories of the system (*) in a neighbourhood $ U $ of an isolated stationary point $ x _ {0} $, where only a finite number $ m $( $ \geq 2 $) of trajectories in $ U \setminus \{ 0 \} $ approaches $ x _ {0} $ and where each of them, completed by $ x _ {0} $, touches at this point in a definite direction (an $ m $- separatrix saddle). Certain types of stationary points of autonomous systems of ordinary differential equations of order $ n \geq 3 $ are also called saddles. For references, see Singular point of a differential equation.

Comments

Cf. also Hyperbolic point and Hyperbolic set and the references given there.

How to Cite This Entry:
Saddle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Saddle&oldid=15481
This article was adapted from an original article by A.F. Andreev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article