Namespaces
Variants
Actions

Difference between revisions of "Symmetric derivative"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A generalization of the concept of derivative to the case of set functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s0916101.png" /> on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s0916102.png" />-dimensional Euclidean space. The symmetric derivative at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s0916103.png" /> is the limit
+
<!--
 +
s0916101.png
 +
$#A+1 = 26 n = 1
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/S091/S.0901610 Symmetric derivative
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s0916104.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s0916105.png" /> is the closed ball with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s0916106.png" /> and radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s0916107.png" />, if this limit exists. The symmetric derivative of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s0916109.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161010.png" /> of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161011.png" /> of a real variable is defined as the limit
+
A generalization of the concept of derivative to the case of set functions  $  \Phi $
 +
on an  $  n $-
 +
dimensional Euclidean space. The symmetric derivative at a point $  x $
 +
is the limit
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161012.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {r \downarrow 0 } \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161013.png" /></td> </tr></table>
+
\frac{\Phi ( S ( x; r)) }{| S ( x; r) | }
 +
  \equiv \
 +
D _ { \mathop{\rm sym}  }
 +
\Phi ( x),
 +
$$
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161014.png" /> of a real variable has a symmetric derivative of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161015.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161016.png" />,
+
where  $  S ( x;  r) $
 +
is the closed ball with centre  $  x $
 +
and radius  $  r $,
 +
if this limit exists. The symmetric derivative of order $  n $
 +
at a point $  x $
 +
of a function  $  f $
 +
of a real variable is defined as the limit
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161017.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {h \rightarrow 0 } \
 +
 
 +
\frac{\Delta _ {s}  ^ {n} f ( x, h) }{h  ^ {n} }
 +
=
 +
$$
 +
 
 +
$$
 +
= \
 +
\lim\limits _ {h \rightarrow 0 } 
 +
\frac{\sum _ {k = 0 } ^ { n }  \left ( \begin{array}{c}
 +
n \\
 +
k
 +
\end{array}
 +
\right ) (- 1)  ^ {k} f \left (
 +
x + {
 +
\frac{n - 2k }{2}
 +
} h \right ) }{h  ^ {n} }
 +
  = D _ { \mathop{\rm sym}  }  ^ {n} f ( x).
 +
$$
 +
 
 +
A function  $  f $
 +
of a real variable has a symmetric derivative of order  $  2r $
 +
at a point  $  x $,
 +
 
 +
$$
 +
D _ { \mathop{\rm sym}  }  ^ {2r} f ( x)  = \beta _ {2r} ,
 +
$$
  
 
if
 
if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161018.png" /></td> </tr></table>
+
$$
 +
{
 +
\frac{1}{2}
 +
}
 +
( f ( x + h) + f ( x - h)) -
 +
\sum _ {k = 0 } ^ { r }
 +
\beta _ {2k}
 +
\frac{h  ^ {2k} }{( 2k)! }
 +
  = \
 +
o ( h  ^ {2r} );
 +
$$
  
and one of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161019.png" />,
+
and one of order $  2r + 1 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161020.png" /></td> </tr></table>
+
$$
 +
D _ { \mathop{\rm sym}  } ^ {2r + 1 } f ( x)  = \
 +
\beta _ {2r + 1 }  ,
 +
$$
  
 
if
 
if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161021.png" /></td> </tr></table>
+
$$
 +
{
 +
\frac{1}{2}
 +
}
 +
( f ( x + h) - f ( x - h)) -
 +
\sum _ {k = 0 } ^ { r }
 +
\beta _ {2k + 1 }
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161022.png" /> has an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161023.png" />-th order derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161024.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161025.png" />, then there is (in both cases) a symmetric derivative at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161026.png" />, and it is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161027.png" />.
+
\frac{h ^ {2k + 1 } }{( 2k + 1)! }
 +
  = \
 +
o ( h ^ {2r + 1 } ).
 +
$$
 +
 
 +
If  $  f $
 +
has an $  n $-
 +
th order derivative $  f ^ { ( n) } $
 +
at a point $  x $,  
 +
then there is (in both cases) a symmetric derivative at $  x $,  
 +
and it is equal to $  f ^ { ( n) } ( x) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Saks,  "Theory of the integral" , Hafner  (1937)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.D. James,  "Generalized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161028.png" />th primitives"  ''Trans. Amer. Math. Soc.'' , '''76''' :  1  (1954)  pp. 149–176</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Saks,  "Theory of the integral" , Hafner  (1937)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.D. James,  "Generalized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161028.png" />th primitives"  ''Trans. Amer. Math. Soc.'' , '''76''' :  1  (1954)  pp. 149–176</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
In [[#References|[1]]] instead of derivative,  "derivate"  is used: symmetric derivate.
 
In [[#References|[1]]] instead of derivative,  "derivate"  is used: symmetric derivate.

Latest revision as of 08:24, 6 June 2020


A generalization of the concept of derivative to the case of set functions $ \Phi $ on an $ n $- dimensional Euclidean space. The symmetric derivative at a point $ x $ is the limit

$$ \lim\limits _ {r \downarrow 0 } \ \frac{\Phi ( S ( x; r)) }{| S ( x; r) | } \equiv \ D _ { \mathop{\rm sym} } \Phi ( x), $$

where $ S ( x; r) $ is the closed ball with centre $ x $ and radius $ r $, if this limit exists. The symmetric derivative of order $ n $ at a point $ x $ of a function $ f $ of a real variable is defined as the limit

$$ \lim\limits _ {h \rightarrow 0 } \ \frac{\Delta _ {s} ^ {n} f ( x, h) }{h ^ {n} } = $$

$$ = \ \lim\limits _ {h \rightarrow 0 } \frac{\sum _ {k = 0 } ^ { n } \left ( \begin{array}{c} n \\ k \end{array} \right ) (- 1) ^ {k} f \left ( x + { \frac{n - 2k }{2} } h \right ) }{h ^ {n} } = D _ { \mathop{\rm sym} } ^ {n} f ( x). $$

A function $ f $ of a real variable has a symmetric derivative of order $ 2r $ at a point $ x $,

$$ D _ { \mathop{\rm sym} } ^ {2r} f ( x) = \beta _ {2r} , $$

if

$$ { \frac{1}{2} } ( f ( x + h) + f ( x - h)) - \sum _ {k = 0 } ^ { r } \beta _ {2k} \frac{h ^ {2k} }{( 2k)! } = \ o ( h ^ {2r} ); $$

and one of order $ 2r + 1 $,

$$ D _ { \mathop{\rm sym} } ^ {2r + 1 } f ( x) = \ \beta _ {2r + 1 } , $$

if

$$ { \frac{1}{2} } ( f ( x + h) - f ( x - h)) - \sum _ {k = 0 } ^ { r } \beta _ {2k + 1 } \frac{h ^ {2k + 1 } }{( 2k + 1)! } = \ o ( h ^ {2r + 1 } ). $$

If $ f $ has an $ n $- th order derivative $ f ^ { ( n) } $ at a point $ x $, then there is (in both cases) a symmetric derivative at $ x $, and it is equal to $ f ^ { ( n) } ( x) $.

References

[1] S. Saks, "Theory of the integral" , Hafner (1937) (Translated from French)
[2] R.D. James, "Generalized th primitives" Trans. Amer. Math. Soc. , 76 : 1 (1954) pp. 149–176

Comments

In [1] instead of derivative, "derivate" is used: symmetric derivate.

How to Cite This Entry:
Symmetric derivative. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_derivative&oldid=15476
This article was adapted from an original article by T.P. Lukashenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article