Namespaces
Variants
Actions

Difference between revisions of "Automata, composition of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
a0140201.png
 +
$#A+1 = 42 n = 0
 +
$#C+1 = 42 : ~/encyclopedia/old_files/data/A014/A.0104020 Automata, composition of
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Operations by which more complex automata are obtained from other automata by combining the initial automata in accordance with certain rules. Composition of automata plays an important role in problems of synthesis and decomposition of automata. The most important and the most frequently used compositions of automata are the direct product, superposition and feedback.
 
Operations by which more complex automata are obtained from other automata by combining the initial automata in accordance with certain rules. Composition of automata plays an important role in problems of synthesis and decomposition of automata. The most important and the most frequently used compositions of automata are the direct product, superposition and feedback.
  
The direct product of automata <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a0140201.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a0140202.png" />, is the automaton <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a0140203.png" /> for which
+
The direct product of automata $  \mathfrak A _ {i} = ( A _ {i} , S _ {i} , B _ {i} , \phi _ {i} , \psi _ {i} ) $,  
 +
$  i = 1 \dots n $,  
 +
is the automaton $  \mathfrak A = (A, S, B, \phi , \psi ) $
 +
for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a0140204.png" /></td> </tr></table>
+
$$
 +
= S _ {1} \times \dots \times S _ {n} ,\  A  = A _ {1} \times \dots \times
 +
A _ {n} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a0140205.png" /></td> </tr></table>
+
$$
 +
= B _ {1} \times \dots \times B _ {n} ,
 +
$$
  
while the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a0140206.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a0140207.png" /> are defined by the relations
+
while the functions $  \phi (s, a) $
 +
and $  \psi (s, a) $
 +
are defined by the relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a0140208.png" /></td> </tr></table>
+
$$
 +
\phi ( ( s _ {1} \dots s _ {n} ), ( a _ {1} \dots a _ {n} ) ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a0140209.png" /></td> </tr></table>
+
$$
 +
= \
 +
( \phi _ {1} (s _ {1} , a _ {1} ) \dots \phi _ {n} (s _ {n} , a _ {n} )),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402010.png" /></td> </tr></table>
+
$$
 +
\psi ( ( s _ {1} \dots s _ {n} ), ( a _ {1} \dots a _ {n} ) ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402011.png" /></td> </tr></table>
+
$$
 +
= \
 +
( \psi _ {1} (s _ {1} , a _ {1} ) \dots \psi _ {n} (s _ {n} , a _ {n} )).
 +
$$
  
The superposition of automata <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402013.png" /> is the automaton <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402014.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402015.png" /> and
+
The superposition of automata $  \mathfrak A _ {1} = (A _ {1} , S _ {1} , B _ {1} , \phi _ {1} , \psi _ {1} ) $
 +
and $  \mathfrak A _ {2} = (B _ {1} , S _ {2} , B _ {2} , \phi _ {2} , \psi _ {2} ) $
 +
is the automaton $  \mathfrak B = (A _ {1} , S, B _ {2} , \phi , \psi ) $
 +
for which $  S = S _ {2} \times S _ {1} $
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402016.png" /></td> </tr></table>
+
$$
 +
\phi ( ( s _ {2} , s _ {1} ), a )  = ( \phi _ {2} ( s _ {2} , \psi _ {1} ( s _ {1} , a ) ), \phi _ {1} ( s _ {1} , a )),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402017.png" /></td> </tr></table>
+
$$
 +
\psi ( ( s _ {2} , s _ {1} ), a )  = \psi _ {2} ( s _ {2} , \psi _ {1} ( s _ {1} , a ) ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402019.png" />.
+
where $  (s _ {2} , s _ {1} ) \in S $
 +
and a \in A _ {1} $.
  
In problems of completeness and synthesis of automata the feedback operation is very important. This operation is applicable to automata with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402020.png" /> inputs and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402021.png" /> outputs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402022.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402024.png" />,
+
In problems of completeness and synthesis of automata the feedback operation is very important. This operation is applicable to automata with $  n $
 +
inputs and $  m $
 +
outputs $  \mathfrak A = (A, S, B, \phi , \psi ) $
 +
where $  A = A _ {1} \times \dots \times A _ {n} $,  
 +
$  B = B _ {1} \times \dots \times B _ {m} $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402025.png" /></td> </tr></table>
+
$$
 +
\psi ( s , ( a _ {1} \dots a _ {n} )) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402026.png" /></td> </tr></table>
+
$$
 +
= \
 +
( \psi _ {1} ( s, ( a _ {1} \dots a _ {n} ) )
 +
\dots \psi _ {m} ( s, ( a _ {1} \dots a _ {n} ) ) ),
 +
$$
  
such that for certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402027.png" /> the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402028.png" /> is true and the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402029.png" /> is independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402030.png" />, i.e.
+
such that for certain $  i, j $
 +
the relation $  B _ {i} = A _ {j} $
 +
is true and the function $  \psi _ {i} $
 +
is independent of a _ {j} $,  
 +
i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402031.png" /></td> </tr></table>
+
$$
 +
\psi _ {i}  = \psi _ {i} ( s, ( a _ {1} \dots a _ {j-1 }  ,
 +
a _ {j+1 }  \dots a _ {n} ) ).
 +
$$
  
Under these conditions, the feedback operation on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402032.png" />-th output and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402033.png" />-th input of automaton <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402034.png" /> yields the automaton <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402035.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402036.png" />
+
Under these conditions, the feedback operation on the $  i $-
 +
th output and $  j $-
 +
th input of automaton $  \mathfrak A $
 +
yields the automaton $  \mathfrak A  ^  \prime  = (A  ^  \prime  , S, B, \phi  ^  \prime  , \psi  ^  \prime  ) $
 +
such that $  A  ^  \prime  = A _ {1} \times \dots \times A _ {j-1} \times A _ {j+1} \times \dots \times A _ {n} , $
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402037.png" /></td> </tr></table>
+
$$
 +
\phi  ^  \prime  (s, (a _ {1} \dots a _ {j-1} , a _ {j+1} \dots a _ {n} )) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402038.png" /></td> </tr></table>
+
$$
 +
= \
 +
\phi (s, (a _ {1} \dots a _ {j-1} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402039.png" /></td> </tr></table>
+
$$
 +
{}{} \psi _ {i} (a _ {1} \dots a _ {j-1} , a _ {j+1} \dots a _ {n} ), a _ {j+1} \dots a _ {n} )),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402040.png" /></td> </tr></table>
+
$$
 +
\psi  ^  \prime  (s, (a _ {1} \dots a _ {j-1} , a _ {j+1} \dots a _ {n} )) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402041.png" /></td> </tr></table>
+
$$
 +
= \
 +
\psi (s, ( a _ {1} \dots a _ {j-1} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402042.png" /></td> </tr></table>
+
$$
 +
{}{} \psi _ {i} (s, ( a _ {1} \dots a _ {j-1} , a _ {j+1} \dots a _ {n} )), a _ {j+1} \dots a _ {n} )).
 +
$$
  
 
There are also other kinds of compositions of automata, e.g. the product, direct sum, semi-direct product, etc.
 
There are also other kinds of compositions of automata, e.g. the product, direct sum, semi-direct product, etc.
Line 53: Line 129:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.M. Glushkov,  "The abstract theory of automata"  ''Russian Math. Surveys'' , '''16''' :  5  (1961)  pp. 1–53  ''Uspekhi Mat. Nauk'' , '''16''' :  5  (1961)  pp. 3–62</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.B. Kudryavtsev,  "On the cardinality of sets of pre-complete sets of certain function systems, related to automata"  ''Problemy Kibernet.''  (1965)  pp. 45–74  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.M. Glushkov,  "The abstract theory of automata"  ''Russian Math. Surveys'' , '''16''' :  5  (1961)  pp. 1–53  ''Uspekhi Mat. Nauk'' , '''16''' :  5  (1961)  pp. 3–62</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.B. Kudryavtsev,  "On the cardinality of sets of pre-complete sets of certain function systems, related to automata"  ''Problemy Kibernet.''  (1965)  pp. 45–74  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 18:49, 5 April 2020


Operations by which more complex automata are obtained from other automata by combining the initial automata in accordance with certain rules. Composition of automata plays an important role in problems of synthesis and decomposition of automata. The most important and the most frequently used compositions of automata are the direct product, superposition and feedback.

The direct product of automata $ \mathfrak A _ {i} = ( A _ {i} , S _ {i} , B _ {i} , \phi _ {i} , \psi _ {i} ) $, $ i = 1 \dots n $, is the automaton $ \mathfrak A = (A, S, B, \phi , \psi ) $ for which

$$ S = S _ {1} \times \dots \times S _ {n} ,\ A = A _ {1} \times \dots \times A _ {n} , $$

$$ B = B _ {1} \times \dots \times B _ {n} , $$

while the functions $ \phi (s, a) $ and $ \psi (s, a) $ are defined by the relations

$$ \phi ( ( s _ {1} \dots s _ {n} ), ( a _ {1} \dots a _ {n} ) ) = $$

$$ = \ ( \phi _ {1} (s _ {1} , a _ {1} ) \dots \phi _ {n} (s _ {n} , a _ {n} )), $$

$$ \psi ( ( s _ {1} \dots s _ {n} ), ( a _ {1} \dots a _ {n} ) ) = $$

$$ = \ ( \psi _ {1} (s _ {1} , a _ {1} ) \dots \psi _ {n} (s _ {n} , a _ {n} )). $$

The superposition of automata $ \mathfrak A _ {1} = (A _ {1} , S _ {1} , B _ {1} , \phi _ {1} , \psi _ {1} ) $ and $ \mathfrak A _ {2} = (B _ {1} , S _ {2} , B _ {2} , \phi _ {2} , \psi _ {2} ) $ is the automaton $ \mathfrak B = (A _ {1} , S, B _ {2} , \phi , \psi ) $ for which $ S = S _ {2} \times S _ {1} $ and

$$ \phi ( ( s _ {2} , s _ {1} ), a ) = ( \phi _ {2} ( s _ {2} , \psi _ {1} ( s _ {1} , a ) ), \phi _ {1} ( s _ {1} , a )), $$

$$ \psi ( ( s _ {2} , s _ {1} ), a ) = \psi _ {2} ( s _ {2} , \psi _ {1} ( s _ {1} , a ) ), $$

where $ (s _ {2} , s _ {1} ) \in S $ and $ a \in A _ {1} $.

In problems of completeness and synthesis of automata the feedback operation is very important. This operation is applicable to automata with $ n $ inputs and $ m $ outputs $ \mathfrak A = (A, S, B, \phi , \psi ) $ where $ A = A _ {1} \times \dots \times A _ {n} $, $ B = B _ {1} \times \dots \times B _ {m} $,

$$ \psi ( s , ( a _ {1} \dots a _ {n} )) = $$

$$ = \ ( \psi _ {1} ( s, ( a _ {1} \dots a _ {n} ) ) \dots \psi _ {m} ( s, ( a _ {1} \dots a _ {n} ) ) ), $$

such that for certain $ i, j $ the relation $ B _ {i} = A _ {j} $ is true and the function $ \psi _ {i} $ is independent of $ a _ {j} $, i.e.

$$ \psi _ {i} = \psi _ {i} ( s, ( a _ {1} \dots a _ {j-1 } , a _ {j+1 } \dots a _ {n} ) ). $$

Under these conditions, the feedback operation on the $ i $- th output and $ j $- th input of automaton $ \mathfrak A $ yields the automaton $ \mathfrak A ^ \prime = (A ^ \prime , S, B, \phi ^ \prime , \psi ^ \prime ) $ such that $ A ^ \prime = A _ {1} \times \dots \times A _ {j-1} \times A _ {j+1} \times \dots \times A _ {n} , $

$$ \phi ^ \prime (s, (a _ {1} \dots a _ {j-1} , a _ {j+1} \dots a _ {n} )) = $$

$$ = \ \phi (s, (a _ {1} \dots a _ {j-1} , $$

$$ {}{} \psi _ {i} (a _ {1} \dots a _ {j-1} , a _ {j+1} \dots a _ {n} ), a _ {j+1} \dots a _ {n} )), $$

$$ \psi ^ \prime (s, (a _ {1} \dots a _ {j-1} , a _ {j+1} \dots a _ {n} )) = $$

$$ = \ \psi (s, ( a _ {1} \dots a _ {j-1} , $$

$$ {}{} \psi _ {i} (s, ( a _ {1} \dots a _ {j-1} , a _ {j+1} \dots a _ {n} )), a _ {j+1} \dots a _ {n} )). $$

There are also other kinds of compositions of automata, e.g. the product, direct sum, semi-direct product, etc.

References

[1] V.M. Glushkov, "The abstract theory of automata" Russian Math. Surveys , 16 : 5 (1961) pp. 1–53 Uspekhi Mat. Nauk , 16 : 5 (1961) pp. 3–62
[2] V.B. Kudryavtsev, "On the cardinality of sets of pre-complete sets of certain function systems, related to automata" Problemy Kibernet. (1965) pp. 45–74 (In Russian)

Comments

For more information see [a1].

References

[a1] F. Géiseg, "Products of automata" , Springer (1986)
How to Cite This Entry:
Automata, composition of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Automata,_composition_of&oldid=15462
This article was adapted from an original article by V.N. Red'ko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article