Difference between revisions of "Holomorphic form"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | h0475402.png | ||
| + | $#A+1 = 61 n = 0 | ||
| + | $#C+1 = 61 : ~/encyclopedia/old_files/data/H047/H.0407540 Holomorphic form | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | ''of degree $ p $ | |
| + | on a complex manifold $ M $'' | ||
| − | + | A [[Differential form|differential form]] $ \alpha $ | |
| + | of type $ ( p, 0) $ | ||
| + | that satisfies the condition $ d ^ {\prime\prime} \alpha = 0 $, | ||
| + | i.e. a form that can be written in the local coordinates $ z _ {1} \dots z _ {n} $ | ||
| + | on $ M $ | ||
| + | as | ||
| − | + | $$ | |
| + | \alpha = \sum _ {i _ {1} \dots i _ {p} } | ||
| + | a _ {i _ {1} \dots i _ {p} } \ | ||
| + | dz ^ {i _ {1} } \wedge \dots \wedge dz ^ {i _ {p} } , | ||
| + | $$ | ||
| − | + | where $ a _ {i _ {1} \dots i _ {p} } $ | |
| + | are holomorphic functions (cf. [[Holomorphic function|Holomorphic function]]). The holomorphic forms of degree $ p $ | ||
| + | form a vector space $ \Omega ^ {p} ( M) $ | ||
| + | over the field $ \mathbf C $; | ||
| + | $ \Omega ^ {0} ( M) $ | ||
| + | is the space of holomorphic functions on $ M $. | ||
| − | + | On a compact [[Kähler manifold|Kähler manifold]] $ M $ | |
| + | the space $ \Omega ^ {p} ( M) $ | ||
| + | coincides with the space $ H ^ {p,0} ( M) $ | ||
| + | of harmonic forms of type $ ( p, 0) $( | ||
| + | cf. [[Harmonic form|Harmonic form]]), hence $ 2 \mathop{\rm dim} \Omega ^ {1} ( M) $ | ||
| + | is the first [[Betti number|Betti number]] of $ M $[[#References|[1]]]. Holomorphic forms on a [[Riemann surface|Riemann surface]] $ M $ | ||
| + | are also known as differentials of the first kind; if $ M $ | ||
| + | is compact, $ \mathop{\rm dim} \Omega ^ {1} ( M) $ | ||
| + | is equal to its genus (cf. [[Genus of a curve|Genus of a curve]]). | ||
| − | + | The spaces $ \Omega ^ {p} ( M) $, | |
| + | $ p = 0 \dots \mathop{\rm dim} _ {\mathbf C } M $, | ||
| + | form a locally exact complex with respect to the operator $ d $, | ||
| + | known as the holomorphic de Rham complex. If $ M $ | ||
| + | is a [[Stein manifold|Stein manifold]], then the cohomology spaces of this complex are isomorphic to the complex cohomology spaces $ H ^ {p} ( M, \mathbf C ) $, | ||
| + | and $ H ^ {p} ( M, \mathbf C ) = 0 $ | ||
| + | if $ p > \mathop{\rm dim} _ {\mathbf C } M $[[#References|[2]]]. | ||
| + | |||
| + | Holomorphic forms with values in some analytic vector bundle (cf. [[Vector bundle, analytic|Vector bundle, analytic]]) $ E $ | ||
| + | over $ M $ | ||
| + | are defined in the same manner (here, holomorphic $ 0 $- | ||
| + | forms are holomorphic sections of the bundle). The germs of holomorphic forms of degree $ p $ | ||
| + | with values in $ E $ | ||
| + | form a locally free analytic sheaf $ \Omega _ {E} ^ {p} $. | ||
| + | The Dolbeault complex of forms of type $ ( p, q) $, | ||
| + | $ q = 0 \dots \mathop{\rm dim} _ {\mathbf C } M $, | ||
| + | with values in $ E $ | ||
| + | is a fine resolution of this sheaf, so that | ||
| + | |||
| + | $$ | ||
| + | H ^ {p, q } ( M, E) \cong \ | ||
| + | H ^ {q} ( M, \Omega _ {E} ^ {p} ) | ||
| + | $$ | ||
(the Dolbeault–Serre theorem [[#References|[1]]], [[#References|[4]]]). | (the Dolbeault–Serre theorem [[#References|[1]]], [[#References|[4]]]). | ||
| − | The definition of holomorphic forms can be extended to complex-analytic spaces. It is sufficient to do this for local models, i.e. for the case of a space | + | The definition of holomorphic forms can be extended to complex-analytic spaces. It is sufficient to do this for local models, i.e. for the case of a space $ X $ |
| + | that is an analytic subspace of a domain $ G \subset \mathbf C ^ {n} $. | ||
| + | The sheaf of germs of holomorphic $ p $- | ||
| + | forms $ \Omega _ {X} ^ {p} $ | ||
| + | in $ X $ | ||
| + | is defined as | ||
| − | + | $$ | |
| + | \left . \Omega _ {G} ^ {p} / K ^ {p} \right | _ {X} , | ||
| + | $$ | ||
| − | where | + | where $ \Omega _ {G} ^ {p} $ |
| + | is the sheaf of germs of holomorphic $ p $- | ||
| + | forms in $ G $, | ||
| + | while $ K ^ {p} $ | ||
| + | consists of the germs of forms of the type | ||
| − | + | $$ | |
| + | \sum _ {k = 1 } ^ { r } | ||
| + | f _ {k} \alpha _ {k} + | ||
| + | \sum _ {l = 1 } ^ { s } | ||
| + | dg _ {l} \wedge \beta _ {l} , | ||
| + | $$ | ||
| − | + | $$ | |
| + | f _ {k} , g _ {l} \in I,\ \alpha _ {k} \in \Omega _ {G} ^ {p} ,\ \beta _ {l} \in \Omega _ {G} ^ {p - 1 } , | ||
| + | $$ | ||
| − | where | + | where $ I $ |
| + | is the sheaf of ideals which define $ X $. | ||
| + | The holomorphic de Rham complex of $ X $ | ||
| + | is also defined, but it is not locally exact. For this complex to be locally exact at a point $ x \in X $ | ||
| + | starting from the $ k $- | ||
| + | th degree it is sufficient that $ X $ | ||
| + | has, in a neighbourhood of $ x $, | ||
| + | a holomorphic contraction onto a local analytic set $ Y \subset X $ | ||
| + | for which $ { \mathop{\rm em} \mathop{\rm dim} } _ {x} Y = k $[[#References|[3]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Chern, "Complex manifolds without potential theory" , Springer (1979)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H.J. Reiffen, "Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen" ''Math. Z.'' , '''101''' (1967) pp. 269–284</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Chern, "Complex manifolds without potential theory" , Springer (1979)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H.J. Reiffen, "Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen" ''Math. Z.'' , '''101''' (1967) pp. 269–284</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)</TD></TR></table> | ||
Latest revision as of 22:10, 5 June 2020
of degree $ p $
on a complex manifold $ M $
A differential form $ \alpha $ of type $ ( p, 0) $ that satisfies the condition $ d ^ {\prime\prime} \alpha = 0 $, i.e. a form that can be written in the local coordinates $ z _ {1} \dots z _ {n} $ on $ M $ as
$$ \alpha = \sum _ {i _ {1} \dots i _ {p} } a _ {i _ {1} \dots i _ {p} } \ dz ^ {i _ {1} } \wedge \dots \wedge dz ^ {i _ {p} } , $$
where $ a _ {i _ {1} \dots i _ {p} } $ are holomorphic functions (cf. Holomorphic function). The holomorphic forms of degree $ p $ form a vector space $ \Omega ^ {p} ( M) $ over the field $ \mathbf C $; $ \Omega ^ {0} ( M) $ is the space of holomorphic functions on $ M $.
On a compact Kähler manifold $ M $ the space $ \Omega ^ {p} ( M) $ coincides with the space $ H ^ {p,0} ( M) $ of harmonic forms of type $ ( p, 0) $( cf. Harmonic form), hence $ 2 \mathop{\rm dim} \Omega ^ {1} ( M) $ is the first Betti number of $ M $[1]. Holomorphic forms on a Riemann surface $ M $ are also known as differentials of the first kind; if $ M $ is compact, $ \mathop{\rm dim} \Omega ^ {1} ( M) $ is equal to its genus (cf. Genus of a curve).
The spaces $ \Omega ^ {p} ( M) $, $ p = 0 \dots \mathop{\rm dim} _ {\mathbf C } M $, form a locally exact complex with respect to the operator $ d $, known as the holomorphic de Rham complex. If $ M $ is a Stein manifold, then the cohomology spaces of this complex are isomorphic to the complex cohomology spaces $ H ^ {p} ( M, \mathbf C ) $, and $ H ^ {p} ( M, \mathbf C ) = 0 $ if $ p > \mathop{\rm dim} _ {\mathbf C } M $[2].
Holomorphic forms with values in some analytic vector bundle (cf. Vector bundle, analytic) $ E $ over $ M $ are defined in the same manner (here, holomorphic $ 0 $- forms are holomorphic sections of the bundle). The germs of holomorphic forms of degree $ p $ with values in $ E $ form a locally free analytic sheaf $ \Omega _ {E} ^ {p} $. The Dolbeault complex of forms of type $ ( p, q) $, $ q = 0 \dots \mathop{\rm dim} _ {\mathbf C } M $, with values in $ E $ is a fine resolution of this sheaf, so that
$$ H ^ {p, q } ( M, E) \cong \ H ^ {q} ( M, \Omega _ {E} ^ {p} ) $$
(the Dolbeault–Serre theorem [1], [4]).
The definition of holomorphic forms can be extended to complex-analytic spaces. It is sufficient to do this for local models, i.e. for the case of a space $ X $ that is an analytic subspace of a domain $ G \subset \mathbf C ^ {n} $. The sheaf of germs of holomorphic $ p $- forms $ \Omega _ {X} ^ {p} $ in $ X $ is defined as
$$ \left . \Omega _ {G} ^ {p} / K ^ {p} \right | _ {X} , $$
where $ \Omega _ {G} ^ {p} $ is the sheaf of germs of holomorphic $ p $- forms in $ G $, while $ K ^ {p} $ consists of the germs of forms of the type
$$ \sum _ {k = 1 } ^ { r } f _ {k} \alpha _ {k} + \sum _ {l = 1 } ^ { s } dg _ {l} \wedge \beta _ {l} , $$
$$ f _ {k} , g _ {l} \in I,\ \alpha _ {k} \in \Omega _ {G} ^ {p} ,\ \beta _ {l} \in \Omega _ {G} ^ {p - 1 } , $$
where $ I $ is the sheaf of ideals which define $ X $. The holomorphic de Rham complex of $ X $ is also defined, but it is not locally exact. For this complex to be locally exact at a point $ x \in X $ starting from the $ k $- th degree it is sufficient that $ X $ has, in a neighbourhood of $ x $, a holomorphic contraction onto a local analytic set $ Y \subset X $ for which $ { \mathop{\rm em} \mathop{\rm dim} } _ {x} Y = k $[3].
References
| [1] | S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) |
| [2] | R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) |
| [3] | H.J. Reiffen, "Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen" Math. Z. , 101 (1967) pp. 269–284 |
| [4] | R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) |
Holomorphic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Holomorphic_form&oldid=15455