Namespaces
Variants
Actions

Difference between revisions of "Affine hull"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(LaTeX)
Line 1: Line 1:
''of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011030/a0110301.png" /> in a vector space''
+
{{TEX|done}}{{MSC|14R}}
  
The intersection of all translated subspaces containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011030/a0110302.png" />.
+
''of a set $M$ in a vector space $V$''
 +
 
 +
The intersection of all flats (translates of subspaces) of $V$ containing $M$. 
 +
 
 +
====Comment====
 +
It is equal to the set of all finite linear combinations of elements $\{m_i : i=1,\ldots,n \}$ of $M$,
 +
$$
 +
\sum_{i=1}^n c_i m_i$
 +
$$
 +
where the coefficients $c_i$ satisfy
 +
$$
 +
\sum_{i=1}^n c_i = 1 \ .
 +
$$
 +
 
 +
====References====
 +
* Grünbaum, Branko, ''Convex polytopes''. Graduate Texts in Mathematics '''221'''. Springer (2003) ISBN 0-387-40409-0 {{ZBL| 1033.52001}}

Revision as of 17:08, 4 December 2014

2020 Mathematics Subject Classification: Primary: 14R [MSN][ZBL]

of a set $M$ in a vector space $V$

The intersection of all flats (translates of subspaces) of $V$ containing $M$.

Comment

It is equal to the set of all finite linear combinations of elements $\{m_i : i=1,\ldots,n \}$ of $M$, $$ \sum_{i=1}^n c_i m_i$ $$ where the coefficients $c_i$ satisfy $$ \sum_{i=1}^n c_i = 1 \ . $$

References

  • Grünbaum, Branko, Convex polytopes. Graduate Texts in Mathematics 221. Springer (2003) ISBN 0-387-40409-0 1033.52001 Zbl 1033.52001
How to Cite This Entry:
Affine hull. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Affine_hull&oldid=15339
This article was adapted from an original article by V.A. Zalgaller (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article