Namespaces
Variants
Actions

Difference between revisions of "Vector field, source of a"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A point of the [[Vector field|vector field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v0964401.png" /> with the property that the flow of the field through any sufficiently small closed surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v0964402.png" /> enclosing it is independent of the surface and positive. The flow
+
<!--
 +
v0964401.png
 +
$#A+1 = 13 n = 0
 +
$#C+1 = 13 : ~/encyclopedia/old_files/data/V096/V.0906440 Vector field, source of a
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v0964403.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v0964404.png" /> is the outward unit normal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v0964405.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v0964406.png" /> is the area element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v0964407.png" />, is called the power of the source. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v0964408.png" /> is negative, one speaks of a sink. If the sources are continuously distributed over the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v0964409.png" /> considered, then the limit
+
A point of the [[Vector field|vector field]]  $  \mathbf a $
 +
with the property that the flow of the field through any sufficiently small closed surface  $  \partial  V $
 +
enclosing it is independent of the surface and positive. The flow
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v09644010.png" /></td> </tr></table>
+
$$
 +
= {\int\limits \int\limits } _ {\partial  V } ( \mathbf n , \mathbf a )  d s ,
 +
$$
  
is called the density (intensity) of the source at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v09644011.png" />. It is equal to the [[Divergence|divergence]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v09644012.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096440/v09644013.png" />.
+
where  $  \mathbf n $
 +
is the outward unit normal to  $  \partial  V $
 +
and  $  s $
 +
is the area element of  $  \partial  V $,
 +
is called the power of the source. If  $  Q $
 +
is negative, one speaks of a sink. If the sources are continuously distributed over the domain  $  V $
 +
considered, then the limit
  
 +
$$
 +
\lim\limits _ {\partial  V \rightarrow M } \
  
 +
\frac{\int\limits \int\limits _ {\partial  V }  ( \mathbf a , \mathbf n )  d s }{V}
 +
 +
$$
 +
 +
is called the density (intensity) of the source at the point  $  M $.
 +
It is equal to the [[Divergence|divergence]] of  $  \mathbf a $
 +
at  $  M $.
  
 
====Comments====
 
====Comments====

Latest revision as of 08:28, 6 June 2020


A point of the vector field $ \mathbf a $ with the property that the flow of the field through any sufficiently small closed surface $ \partial V $ enclosing it is independent of the surface and positive. The flow

$$ Q = {\int\limits \int\limits } _ {\partial V } ( \mathbf n , \mathbf a ) d s , $$

where $ \mathbf n $ is the outward unit normal to $ \partial V $ and $ s $ is the area element of $ \partial V $, is called the power of the source. If $ Q $ is negative, one speaks of a sink. If the sources are continuously distributed over the domain $ V $ considered, then the limit

$$ \lim\limits _ {\partial V \rightarrow M } \ \frac{\int\limits \int\limits _ {\partial V } ( \mathbf a , \mathbf n ) d s }{V} $$

is called the density (intensity) of the source at the point $ M $. It is equal to the divergence of $ \mathbf a $ at $ M $.

Comments

A combination of a source and a vortex in a hydrodynamical flow gives rise to a swirl flow.

References

[a1] J. Marsden, A. Weinstein, "Calculus" , 3 , Springer (1988)
[a2] H. Triebel, "Analysis and mathematical physics" , Reidel (1986) pp. Sect. 16
How to Cite This Entry:
Vector field, source of a. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vector_field,_source_of_a&oldid=15332
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article