Difference between revisions of "Alternion"
 (Importing text file)  | 
				Ulf Rehmann (talk | contribs)  m (tex encoded by computer)  | 
				||
| Line 1: | Line 1: | ||
| − | + | <!--  | |
| + | a0121001.png  | ||
| + | $#A+1 = 40 n = 0  | ||
| + | $#C+1 = 40 : ~/encyclopedia/old_files/data/A012/A.0102100 Alternion  | ||
| + | Automatically converted into TeX, above some diagnostics.  | ||
| + | Please remove this comment and the {{TEX|auto}} line below,  | ||
| + | if TeX found to be correct.  | ||
| + | -->  | ||
| − | + | {{TEX|auto}}  | |
| + | {{TEX|done}}  | ||
| − | + | A hypercomplex number. Alternions may be considered as a generalization of the complex numbers, double numbers (cf. [[Double and dual numbers|Double and dual numbers]]) and quaternions. The algebra  $  {}  ^ {l} A _ {n} $  | |
| + | of alternions of order  $  n $  | ||
| + | and of index  $  l $  | ||
| + | is an algebra of dimension  $  2  ^ {n-1} $  | ||
| + | over the field of real numbers, with unit element 1 and a system of generators  $  l _ {1} \dots l _ {n-1} $,   | ||
| + | in which the multiplication satisfies the formula  | ||
| − | + | $$   | |
| + | l _ {i} l _ {j}  =  - l _ {j} l _ {i} ,  | ||
| + | \  l _ {i}  ^ {2}  =  - \epsilon _ {i} ,  | ||
| + | $$  | ||
| − | where   | + | where  $  \epsilon _ {i} = \pm 1 $,   | 
| + | the value  $  -1 $  | ||
| + | occurs  $  l $  | ||
| + | times and  $  +1 $  | ||
| + | occurs  $  n - l - 1 $  | ||
| + | times, respectively. A base of the algebra is formed by the unit element and by elements of the form  | ||
| − | + | $$   | |
| + | l _ {j _ {1}  } \dots  | ||
| + | l _ {j _ {k}  }  =  l _ {j _ {1}  \dots j _ {k} } ,  | ||
| + | $$  | ||
| − | <  | + | where  $  j _ {1} < \dots < j _ {k} $.    | 
| + | In this base any alternion  $  \alpha $  | ||
| + | can be written as  | ||
| − | + | $$   | |
| + | \alpha  =  a + \sum _ { i } a  ^ {i} l _ {i} +  | ||
| + | \sum _ { i } \sum _ { j } a ^ {i j } l _ {i j }  + \dots +  | ||
| + | $$  | ||
| − | + | $$   | |
| + | +   | ||
| + | a ^ {1 \dots (n-1) } l _ {1 \dots n - 1 }  ,  | ||
| + | $$  | ||
| + | |||
| + | where  $  a, a  ^ {i} \dots a ^ {1 \dots (n-1) } $  | ||
| + | are real numbers. The alternion  $  \overline \alpha \; $  | ||
| + | conjugate to the alternion  $  \alpha $  | ||
| + | is defined by the formula  | ||
| + | |||
| + | $$   | ||
| + | \overline \alpha \;  =  \sum _ { k } ( - 1 ) ^ {k ( k + 1 ) / 2 }  | ||
| + | a ^ {i _ {1} \dots i _ {k} }  | ||
| + | l _ {i _ {1}  } \dots l _ {i _ {k}  } .  | ||
| + | $$  | ||
The following equalities hold  | The following equalities hold  | ||
| − | + | $$   | |
| + | \overline{ {\alpha + \beta }}\;  =  \overline \alpha \; + \overline \beta \; ,  | ||
| + | \  \overline \alpha \; bar  =  \alpha ,  | ||
| + | \  \overline{ {\alpha \beta }}\;  =  \overline \beta \; \overline \alpha \; .  | ||
| + | $$  | ||
| − | The product   | + | The product  $  \overline \alpha \; \alpha $  | 
| + | is always a positive real number; the quantity  $  | \alpha | = \sqrt {\overline \alpha \; \alpha } $  | ||
| + | is called the modulus of the alternion  $  \alpha $.    | ||
| + | If the number  $  | \beta - \alpha | $  | ||
| + | is taken as the distance between two alternions  $  \alpha $  | ||
| + | and  $  \beta $,    | ||
| + | then the algebras  $  {}  ^ {0} A _ {n} $  | ||
| + | and  $  {}  ^ {l} A _ {n} $,   | ||
| + | $  l > 0 $,    | ||
| + | are isometric to the Euclidean space  $  \mathbf R ^ {2  ^ {n-1} } $  | ||
| + | and the pseudo-Euclidean spaces  $  {}  ^ {l} \mathbf R  ^ {2} ^ {n-1 } $,    | ||
| + | respectively. The algebra  $  {}  ^ {0} A _ {1} $  | ||
| + | is isomorphic to the field of real numbers;  $  {}  ^ {0} A _ {2} $  | ||
| + | is isomorphic to the field of complex numbers;  $  {}  ^ {1} A _ {2} $  | ||
| + | is isomorphic to the algebra of double numbers;  $  {}  ^ {0} A _ {3} $  | ||
| + | is isomorphic to the skew-field of quaternions; and  $  {}  ^ {1} A _ {3} $  | ||
| + | and  $  {}  ^ {2} A _ {3} $  | ||
| + | are isomorphic to the so-called algebras of anti-quaternions. The elements of  $  {}  ^ {0} A _ {n} $  | ||
| + | are the so-called Clifford numbers. The algebra  $  {}  ^ {4} A _ {5} $  | ||
| + | was studied by P. Dirac in the context of the spin of an electron.  | ||
The algebras of alternions are special cases of Clifford algebras (cf. [[Clifford algebra|Clifford algebra]]).  | The algebras of alternions are special cases of Clifford algebras (cf. [[Clifford algebra|Clifford algebra]]).  | ||
Revision as of 16:10, 1 April 2020
A hypercomplex number. Alternions may be considered as a generalization of the complex numbers, double numbers (cf. Double and dual numbers) and quaternions. The algebra  $  {}  ^ {l} A _ {n} $
of alternions of order  $  n $
and of index  $  l $
is an algebra of dimension  $  2  ^ {n-1} $
over the field of real numbers, with unit element 1 and a system of generators  $  l _ {1} \dots l _ {n-1} $, 
in which the multiplication satisfies the formula
$$ l _ {i} l _ {j} = - l _ {j} l _ {i} , \ l _ {i} ^ {2} = - \epsilon _ {i} , $$
where $ \epsilon _ {i} = \pm 1 $, the value $ -1 $ occurs $ l $ times and $ +1 $ occurs $ n - l - 1 $ times, respectively. A base of the algebra is formed by the unit element and by elements of the form
$$ l _ {j _ {1} } \dots l _ {j _ {k} } = l _ {j _ {1} \dots j _ {k} } , $$
where $ j _ {1} < \dots < j _ {k} $. In this base any alternion $ \alpha $ can be written as
$$ \alpha = a + \sum _ { i } a ^ {i} l _ {i} + \sum _ { i } \sum _ { j } a ^ {i j } l _ {i j } + \dots + $$
$$ + a ^ {1 \dots (n-1) } l _ {1 \dots n - 1 } , $$
where $ a, a ^ {i} \dots a ^ {1 \dots (n-1) } $ are real numbers. The alternion $ \overline \alpha \; $ conjugate to the alternion $ \alpha $ is defined by the formula
$$ \overline \alpha \; = \sum _ { k } ( - 1 ) ^ {k ( k + 1 ) / 2 } a ^ {i _ {1} \dots i _ {k} } l _ {i _ {1} } \dots l _ {i _ {k} } . $$
The following equalities hold
$$ \overline{ {\alpha + \beta }}\; = \overline \alpha \; + \overline \beta \; , \ \overline \alpha \; bar = \alpha , \ \overline{ {\alpha \beta }}\; = \overline \beta \; \overline \alpha \; . $$
The product $ \overline \alpha \; \alpha $ is always a positive real number; the quantity $ | \alpha | = \sqrt {\overline \alpha \; \alpha } $ is called the modulus of the alternion $ \alpha $. If the number $ | \beta - \alpha | $ is taken as the distance between two alternions $ \alpha $ and $ \beta $, then the algebras $ {} ^ {0} A _ {n} $ and $ {} ^ {l} A _ {n} $, $ l > 0 $, are isometric to the Euclidean space $ \mathbf R ^ {2 ^ {n-1} } $ and the pseudo-Euclidean spaces $ {} ^ {l} \mathbf R ^ {2} ^ {n-1 } $, respectively. The algebra $ {} ^ {0} A _ {1} $ is isomorphic to the field of real numbers; $ {} ^ {0} A _ {2} $ is isomorphic to the field of complex numbers; $ {} ^ {1} A _ {2} $ is isomorphic to the algebra of double numbers; $ {} ^ {0} A _ {3} $ is isomorphic to the skew-field of quaternions; and $ {} ^ {1} A _ {3} $ and $ {} ^ {2} A _ {3} $ are isomorphic to the so-called algebras of anti-quaternions. The elements of $ {} ^ {0} A _ {n} $ are the so-called Clifford numbers. The algebra $ {} ^ {4} A _ {5} $ was studied by P. Dirac in the context of the spin of an electron.
The algebras of alternions are special cases of Clifford algebras (cf. Clifford algebra).
References
| [1] | B.A. Rozenfel'd, "Non-Euclidean geometry" , Moscow (1955) (In Russian) | 
Alternion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Alternion&oldid=15232