Namespaces
Variants
Actions

Difference between revisions of "Wurf"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An ordered set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w0981901.png" /> points in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w0981902.png" />-dimensional projective space if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w0981903.png" />, and of four points if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w0981904.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w0981905.png" />, no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w0981906.png" /> points of the wurf belong to a hyperplane. Two wurfs on a straight line or on a conical section will be equal if the two quadruplets of points of which they are constituted are projective. The operations of addition and multiplication can be defined for wurfs. In so doing it is expedient to use wurfs with three base points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w0981907.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w0981908.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w0981909.png" /> — the so-called reduced wurfs. In this manner operations over wurfs are reduced to operations over points.
+
<!--
 +
w0981901.png
 +
$#A+1 = 53 n = 0
 +
$#C+1 = 53 : ~/encyclopedia/old_files/data/W098/W.0908190 Wurf
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The sum of two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819011.png" /> (other than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819012.png" />) is the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819013.png" /> which corresponds to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819014.png" /> under the hyperbolic [[Involution|involution]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819015.png" /> that interchanges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819017.png" /> and leaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819018.png" /> fixed. The operation of addition is both commutative and associative. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819019.png" /> is the zero element, and to each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819020.png" /> there corresponds an opposite point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819021.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819022.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The product of two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819024.png" /> other than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819026.png" /> is the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819027.png" /> which, together with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819028.png" />, forms a pair under the elliptic or hyperbolic involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819029.png" /> that interchanges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819030.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819032.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819033.png" />. The operation of multiplication is both commutative and associative. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819034.png" /> is the unit element, and for each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819035.png" /> there exists an inverse point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819036.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819037.png" />.
+
An ordered set of  $  n + 2 $
 +
points in an  $  n $-
 +
dimensional projective space if  $  n > 1 $,
 +
and of four points if  $  n = 1 $.  
 +
If  $  n > 1 $,
 +
no  $  n + 1 $
 +
points of the wurf belong to a hyperplane. Two wurfs on a straight line or on a conical section will be equal if the two quadruplets of points of which they are constituted are projective. The operations of addition and multiplication can be defined for wurfs. In so doing it is expedient to use wurfs with three base points  $  P _ {0} $,
 +
$  P _ {1} $,
 +
$  P _  \infty  $—
 +
the so-called reduced wurfs. In this manner operations over wurfs are reduced to operations over points.
 +
 
 +
The sum of two points  $  A $
 +
and  $  B $(
 +
other than $  P _  \infty  $)
 +
is the point  $  A + B $
 +
which corresponds to  $  P _ {0} $
 +
under the hyperbolic [[Involution|involution]]  $  ( AB)( P _  \infty  P _  \infty  ) $
 +
that interchanges  $  A $
 +
and  $  B $
 +
and leaves  $  P _  \infty  $
 +
fixed. The operation of addition is both commutative and associative. The point  $  P _ {0} $
 +
is the zero element, and to each point  $  A $
 +
there corresponds an opposite point  $  - A $:
 +
$  A + (- A) = P _ {0} $.
 +
 
 +
The product of two points  $  A $
 +
and  $  B $
 +
other than  $  P _ {0} $,
 +
$  P _  \infty  $
 +
is the point $  A \times B $
 +
which, together with $  P _ {1} $,  
 +
forms a pair under the elliptic or hyperbolic involution $  ( AB)( P _ {0} P _  \infty  ) $
 +
that interchanges $  A $
 +
with $  B $
 +
and $  P _ {0} $
 +
with $  P _  \infty  $.  
 +
The operation of multiplication is both commutative and associative. The point $  P _ {1} $
 +
is the unit element, and for each point $  A $
 +
there exists an inverse point $  A  ^ {-} 1 $:  
 +
$  A \times A  ^ {-} 1 = P _ {1} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  K.G.C. von Staudt,  "Beiträge zur Geometrie der Lage" , '''2''' , Korn , Nürnberg  (1959)  pp. 166–194</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H.S.M. Coxeter,  "The real projective plane" , Springer  (1992)  pp. Chapt. 11</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  K.G.C. von Staudt,  "Beiträge zur Geometrie der Lage" , '''2''' , Korn , Nürnberg  (1959)  pp. 166–194</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H.S.M. Coxeter,  "The real projective plane" , Springer  (1992)  pp. Chapt. 11</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Line 15: Line 60:
 
The modern methods began with [[#References|[a1]]].
 
The modern methods began with [[#References|[a1]]].
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819038.png" /> are the points on the projective line with coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819041.png" />, respectively, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819043.png" /> are the points with coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819045.png" />, then the sum and product of the wurf equivalence classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819047.png" /> are the wurf equivalence classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819049.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819051.png" /> have the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098190/w09819053.png" />.
+
If $  P _ {0} , P _ {1} , P _  \infty  $
 +
are the points on the projective line with coordinates $  ( 0:1) $,  
 +
$  ( 1:1) $,  
 +
$  ( 1:0) $,  
 +
respectively, and $  A $
 +
and $  B $
 +
are the points with coordinates $  ( a:1) $
 +
and $  ( b:1) $,  
 +
then the sum and product of the wurf equivalence classes $  ( P _ {0} , P _ {1} , P _  \infty  , A) $
 +
and $  ( P _ {0} , P _ {1} , P _  \infty  , B) $
 +
are the wurf equivalence classes $  ( P _ {0} , P _ {1} , P _  \infty  , A+ B) $
 +
and $  ( P _ {0} , P _ {1} , P _  \infty  , A \times B) $,  
 +
where $  A+ B $
 +
and $  A \times B $
 +
have the coordinates $  ( a+ b:1) $
 +
and $  ( ab:1) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  O. Veblen,  J.W. Young,  "Projective geometry" , '''1–2''' , Blaisdell  (1946)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  O. Veblen,  J.W. Young,  "Projective geometry" , '''1–2''' , Blaisdell  (1946)</TD></TR></table>

Latest revision as of 08:29, 6 June 2020


An ordered set of $ n + 2 $ points in an $ n $- dimensional projective space if $ n > 1 $, and of four points if $ n = 1 $. If $ n > 1 $, no $ n + 1 $ points of the wurf belong to a hyperplane. Two wurfs on a straight line or on a conical section will be equal if the two quadruplets of points of which they are constituted are projective. The operations of addition and multiplication can be defined for wurfs. In so doing it is expedient to use wurfs with three base points $ P _ {0} $, $ P _ {1} $, $ P _ \infty $— the so-called reduced wurfs. In this manner operations over wurfs are reduced to operations over points.

The sum of two points $ A $ and $ B $( other than $ P _ \infty $) is the point $ A + B $ which corresponds to $ P _ {0} $ under the hyperbolic involution $ ( AB)( P _ \infty P _ \infty ) $ that interchanges $ A $ and $ B $ and leaves $ P _ \infty $ fixed. The operation of addition is both commutative and associative. The point $ P _ {0} $ is the zero element, and to each point $ A $ there corresponds an opposite point $ - A $: $ A + (- A) = P _ {0} $.

The product of two points $ A $ and $ B $ other than $ P _ {0} $, $ P _ \infty $ is the point $ A \times B $ which, together with $ P _ {1} $, forms a pair under the elliptic or hyperbolic involution $ ( AB)( P _ {0} P _ \infty ) $ that interchanges $ A $ with $ B $ and $ P _ {0} $ with $ P _ \infty $. The operation of multiplication is both commutative and associative. The point $ P _ {1} $ is the unit element, and for each point $ A $ there exists an inverse point $ A ^ {-} 1 $: $ A \times A ^ {-} 1 = P _ {1} $.

References

[1] K.G.C. von Staudt, "Beiträge zur Geometrie der Lage" , 2 , Korn , Nürnberg (1959) pp. 166–194
[2] H.S.M. Coxeter, "The real projective plane" , Springer (1992) pp. Chapt. 11

Comments

K. von Staudt used his "Würfe" for the coordinatization of projective geometry. Nowadays his methods are considered obsolete, although ingenious.

The modern methods began with [a1].

If $ P _ {0} , P _ {1} , P _ \infty $ are the points on the projective line with coordinates $ ( 0:1) $, $ ( 1:1) $, $ ( 1:0) $, respectively, and $ A $ and $ B $ are the points with coordinates $ ( a:1) $ and $ ( b:1) $, then the sum and product of the wurf equivalence classes $ ( P _ {0} , P _ {1} , P _ \infty , A) $ and $ ( P _ {0} , P _ {1} , P _ \infty , B) $ are the wurf equivalence classes $ ( P _ {0} , P _ {1} , P _ \infty , A+ B) $ and $ ( P _ {0} , P _ {1} , P _ \infty , A \times B) $, where $ A+ B $ and $ A \times B $ have the coordinates $ ( a+ b:1) $ and $ ( ab:1) $.

References

[a1] O. Veblen, J.W. Young, "Projective geometry" , 1–2 , Blaisdell (1946)
How to Cite This Entry:
Wurf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wurf&oldid=15205
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article