|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l0576702.png" />-group''
| + | <!-- |
| + | l0576702.png |
| + | $#A+1 = 80 n = 0 |
| + | $#C+1 = 80 : ~/encyclopedia/old_files/data/L057/L.0507670 Lattice\AAhordered group, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A [[Group|group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l0576703.png" /> on the set of elements of which a partial-order relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l0576704.png" /> is defined possessing the properties: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l0576705.png" /> is a [[Lattice|lattice]] relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l0576706.png" />, i.e. for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l0576707.png" /> there are elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l0576708.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l0576709.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767011.png" />; for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767013.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767014.png" />, and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767016.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767017.png" />; and 2) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767018.png" /> the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767019.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767020.png" />. Similarly, a lattice-ordered group can be defined as an [[Algebraic system|algebraic system]] of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767021.png" /> that satisfies the axioms: 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767022.png" /> is a group; 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767023.png" /> is a lattice; and 5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767025.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767026.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The lattice of elements of a lattice-ordered group is distributive (cf. [[Distributive lattice|Distributive lattice]]). The absolute value (respectively, the positive and the negative part) of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767027.png" /> is the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767028.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767030.png" />). In lattice-ordered groups, the following relations hold:
| + | '' $ l $- |
| + | group'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767031.png" /></td> </tr></table>
| + | A [[Group|group]] $ G $ |
| + | on the set of elements of which a partial-order relation $ \leq $ |
| + | is defined possessing the properties: 1) $ G $ |
| + | is a [[Lattice|lattice]] relative to $ \leq $, |
| + | i.e. for any $ x, y \in G $ |
| + | there are elements $ x \wedge y $, |
| + | $ x \lor y $ |
| + | such that $ x \wedge y \leq x, y $ |
| + | and $ x \lor y \geq x, y $; |
| + | for any $ z \in G $, |
| + | $ z \leq x, y $ |
| + | implies $ z \leq x \wedge y $, |
| + | and for any $ t \in G $ |
| + | and $ x, y \leq t $ |
| + | one has $ x \lor y \leq t $; |
| + | and 2) for any $ a, b, x, y \in G $ |
| + | the inequality $ a \leq b $ |
| + | implies $ xay \leq xby $. |
| + | Similarly, a lattice-ordered group can be defined as an [[Algebraic system|algebraic system]] of signature $ \langle \cdot , {} ^ {-} 1 , e, \wedge, \lor \rangle $ |
| + | that satisfies the axioms: 3) $ \langle G, \cdot , {} ^ {-} 1 , e\rangle $ |
| + | is a group; 4) $ \langle G, \lor , \wedge\rangle $ |
| + | is a lattice; and 5) $ x( y \lor z) t = xyt \lor xzt $ |
| + | and $ x( y \wedge z) t = xyt \wedge xzt $ |
| + | for any $ x, y, z, t \in G $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767032.png" /></td> </tr></table>
| + | The lattice of elements of a lattice-ordered group is distributive (cf. [[Distributive lattice|Distributive lattice]]). The absolute value (respectively, the positive and the negative part) of an element $ x $ |
| + | is the element $ | x | = x \lor x ^ {-} 1 $( |
| + | respectively, $ x ^ {+} = x\lor e $ |
| + | and $ x ^ {-} = x \wedge e $). |
| + | In lattice-ordered groups, the following relations hold: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767033.png" /></td> </tr></table>
| + | $$ |
| + | x = x ^ {+} x ^ {-} ,\ \ |
| + | | x | ^ {-} 1 \leq x \leq | x | , |
| + | $$ |
| | | |
− | Two elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767035.png" /> are called orthogonal if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767036.png" />. Orthogonal elements commute.
| + | $$ |
| + | | x | = x ^ {+} ( x ^ {-} ) ^ {-} 1 ,\ x ^ {+} \wedge ( x ^ {-} ) ^ {-} 1 = e, |
| + | $$ |
| | | |
− | A subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767037.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767038.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767039.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767041.png" />-subgroup if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767042.png" /> is a subgroup and a sublattice in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767043.png" />; an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767044.png" />-subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767045.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767047.png" />-ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767048.png" /> if it is normal and convex in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767049.png" />. The set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767050.png" />-subgroups of a lattice-ordered group forms a sublattice of the lattice of all its subgroups. The lattice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767051.png" />-ideals of a lattice-ordered group is distributive. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767053.png" />-homomorphism of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767054.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767055.png" /> into an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767056.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767057.png" /> is a [[Homomorphism|homomorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767058.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767059.png" /> into the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767060.png" /> such that
| + | $$ |
| + | ( x \lor y) ^ {-} 1 = x ^ {-} 1 \wedge y ^ {-} 1 ,\ \ |
| + | ( x \wedge y) ^ {-} 1 = x ^ {-} 1 \lor y ^ {-} 1 . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767061.png" /></td> </tr></table>
| + | Two elements $ x $ |
| + | and $ y $ |
| + | are called orthogonal if $ | x | \lor | y | = e $. |
| + | Orthogonal elements commute. |
| | | |
− | The kernels of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767062.png" />-homomorphisms are precisely the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767063.png" />-ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767064.png" />-groups. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767065.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767066.png" />-group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767067.png" />, then the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767068.png" /> is a convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767069.png" />-subgroup in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767070.png" /> (cf. [[Convex subgroup|Convex subgroup]]).
| + | A subset $ H $ |
| + | of an $ l $- |
| + | group $ G $ |
| + | is called an $ l $- |
| + | subgroup if $ H $ |
| + | is a subgroup and a sublattice in $ G $; |
| + | an $ l $- |
| + | subgroup $ H $ |
| + | is called an $ l $- |
| + | ideal of $ G $ |
| + | if it is normal and convex in $ G $. |
| + | The set of $ l $- |
| + | subgroups of a lattice-ordered group forms a sublattice of the lattice of all its subgroups. The lattice of $ l $- |
| + | ideals of a lattice-ordered group is distributive. An $ l $- |
| + | homomorphism of an $ l $- |
| + | group $ G $ |
| + | into an $ l $- |
| + | group $ H $ |
| + | is a [[Homomorphism|homomorphism]] $ \phi $ |
| + | of the group $ G $ |
| + | into the group $ H $ |
| + | such that |
| | | |
− | The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767071.png" /> of one-to-one order-preserving mappings of a totally ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767072.png" /> onto itself is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767073.png" />-group (if for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767074.png" /> one assumes that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767075.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767076.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767077.png" />). Every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767078.png" />-group is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767079.png" />-isomorphic to an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767080.png" />-subgroup of the lattice-ordered group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767081.png" /> for a suitable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767082.png" />.
| + | $$ |
| + | \phi ( x \lor y) = \phi ( x) \lor \phi ( y) ,\ \ |
| + | \phi ( x \wedge y) = \phi ( x) \wedge \phi ( y). |
| + | $$ |
| | | |
− | The class of all lattice-ordered groups is a variety of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767083.png" /> (cf. [[Variety of groups|Variety of groups]]). Its most important subvariety is the class of lattice-ordered groups that can be approximated by totally ordered groups (the class of representable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767085.png" />-groups, cf. also [[Totally ordered group|Totally ordered group]]). | + | The kernels of $ l $- |
| + | homomorphisms are precisely the $ l $- |
| + | ideals of $ l $- |
| + | groups. If $ G $ |
| + | is an $ l $- |
| + | group and $ M \subset G $, |
| + | then the set $ M ^ \perp = \{ {x \in G } : {| x | \wedge | m | = e \textrm{ for every } m \in M } \} $ |
| + | is a convex $ l $- |
| + | subgroup in $ G $( |
| + | cf. [[Convex subgroup|Convex subgroup]]). |
| + | |
| + | The group $ A( L) $ |
| + | of one-to-one order-preserving mappings of a totally ordered set $ L $ |
| + | onto itself is an $ l $- |
| + | group (if for $ f, g \in A( L) $ |
| + | one assumes that $ f \leq g $ |
| + | if and only if $ f( \alpha ) \leq g( \alpha ) $ |
| + | for all $ \alpha \in L $). |
| + | Every $ l $- |
| + | group is $ l $- |
| + | isomorphic to an $ l $- |
| + | subgroup of the lattice-ordered group $ A( L) $ |
| + | for a suitable set $ L $. |
| + | |
| + | The class of all lattice-ordered groups is a variety of signature $ \langle \cdot , {} ^ {-} 1 , e, \wedge, \lor\rangle $( |
| + | cf. [[Variety of groups|Variety of groups]]). Its most important subvariety is the class of lattice-ordered groups that can be approximated by totally ordered groups (the class of representable $ l $- |
| + | groups, cf. also [[Totally ordered group|Totally ordered group]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Birkhoff, "Lattice theory" , ''Colloq. Publ.'' , '''25''' , Amer. Math. Soc. (1973)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Birkhoff, "Lattice theory" , ''Colloq. Publ.'' , '''25''' , Amer. Math. Soc. (1973)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Anderson, T. Feil, "Lattice-ordered groups. An introduction" , Reidel (1988)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.M.W. Glass (ed.) W.Ch. Holland (ed.) , ''Lattice-ordered groups. Advances and techniques'' , Kluwer (1989)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Martinez (ed.) , ''Ordered algebraic structures'' , Kluwer (1989)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Anderson, T. Feil, "Lattice-ordered groups. An introduction" , Reidel (1988)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.M.W. Glass (ed.) W.Ch. Holland (ed.) , ''Lattice-ordered groups. Advances and techniques'' , Kluwer (1989)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Martinez (ed.) , ''Ordered algebraic structures'' , Kluwer (1989)</TD></TR></table> |
$ l $-
group
A group $ G $
on the set of elements of which a partial-order relation $ \leq $
is defined possessing the properties: 1) $ G $
is a lattice relative to $ \leq $,
i.e. for any $ x, y \in G $
there are elements $ x \wedge y $,
$ x \lor y $
such that $ x \wedge y \leq x, y $
and $ x \lor y \geq x, y $;
for any $ z \in G $,
$ z \leq x, y $
implies $ z \leq x \wedge y $,
and for any $ t \in G $
and $ x, y \leq t $
one has $ x \lor y \leq t $;
and 2) for any $ a, b, x, y \in G $
the inequality $ a \leq b $
implies $ xay \leq xby $.
Similarly, a lattice-ordered group can be defined as an algebraic system of signature $ \langle \cdot , {} ^ {-} 1 , e, \wedge, \lor \rangle $
that satisfies the axioms: 3) $ \langle G, \cdot , {} ^ {-} 1 , e\rangle $
is a group; 4) $ \langle G, \lor , \wedge\rangle $
is a lattice; and 5) $ x( y \lor z) t = xyt \lor xzt $
and $ x( y \wedge z) t = xyt \wedge xzt $
for any $ x, y, z, t \in G $.
The lattice of elements of a lattice-ordered group is distributive (cf. Distributive lattice). The absolute value (respectively, the positive and the negative part) of an element $ x $
is the element $ | x | = x \lor x ^ {-} 1 $(
respectively, $ x ^ {+} = x\lor e $
and $ x ^ {-} = x \wedge e $).
In lattice-ordered groups, the following relations hold:
$$
x = x ^ {+} x ^ {-} ,\ \
| x | ^ {-} 1 \leq x \leq | x | ,
$$
$$
| x | = x ^ {+} ( x ^ {-} ) ^ {-} 1 ,\ x ^ {+} \wedge ( x ^ {-} ) ^ {-} 1 = e,
$$
$$
( x \lor y) ^ {-} 1 = x ^ {-} 1 \wedge y ^ {-} 1 ,\ \
( x \wedge y) ^ {-} 1 = x ^ {-} 1 \lor y ^ {-} 1 .
$$
Two elements $ x $
and $ y $
are called orthogonal if $ | x | \lor | y | = e $.
Orthogonal elements commute.
A subset $ H $
of an $ l $-
group $ G $
is called an $ l $-
subgroup if $ H $
is a subgroup and a sublattice in $ G $;
an $ l $-
subgroup $ H $
is called an $ l $-
ideal of $ G $
if it is normal and convex in $ G $.
The set of $ l $-
subgroups of a lattice-ordered group forms a sublattice of the lattice of all its subgroups. The lattice of $ l $-
ideals of a lattice-ordered group is distributive. An $ l $-
homomorphism of an $ l $-
group $ G $
into an $ l $-
group $ H $
is a homomorphism $ \phi $
of the group $ G $
into the group $ H $
such that
$$
\phi ( x \lor y) = \phi ( x) \lor \phi ( y) ,\ \
\phi ( x \wedge y) = \phi ( x) \wedge \phi ( y).
$$
The kernels of $ l $-
homomorphisms are precisely the $ l $-
ideals of $ l $-
groups. If $ G $
is an $ l $-
group and $ M \subset G $,
then the set $ M ^ \perp = \{ {x \in G } : {| x | \wedge | m | = e \textrm{ for every } m \in M } \} $
is a convex $ l $-
subgroup in $ G $(
cf. Convex subgroup).
The group $ A( L) $
of one-to-one order-preserving mappings of a totally ordered set $ L $
onto itself is an $ l $-
group (if for $ f, g \in A( L) $
one assumes that $ f \leq g $
if and only if $ f( \alpha ) \leq g( \alpha ) $
for all $ \alpha \in L $).
Every $ l $-
group is $ l $-
isomorphic to an $ l $-
subgroup of the lattice-ordered group $ A( L) $
for a suitable set $ L $.
The class of all lattice-ordered groups is a variety of signature $ \langle \cdot , {} ^ {-} 1 , e, \wedge, \lor\rangle $(
cf. Variety of groups). Its most important subvariety is the class of lattice-ordered groups that can be approximated by totally ordered groups (the class of representable $ l $-
groups, cf. also Totally ordered group).
References
[1] | G. Birkhoff, "Lattice theory" , Colloq. Publ. , 25 , Amer. Math. Soc. (1973) |
[2] | L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963) |
References
[a1] | M. Anderson, T. Feil, "Lattice-ordered groups. An introduction" , Reidel (1988) |
[a2] | A.M.W. Glass (ed.) W.Ch. Holland (ed.) , Lattice-ordered groups. Advances and techniques , Kluwer (1989) |
[a3] | J. Martinez (ed.) , Ordered algebraic structures , Kluwer (1989) |