Difference between revisions of "Zorich theorem"
(Importing text file) |
(Tex done) |
||
Line 1: | Line 1: | ||
− | In 1967, V.A. Zorich proved the following result for | + | In 1967, V.A. Zorich proved the following result for [[quasi-regular mapping]]s in space: A [[Local homeomorphism|locally homeomorphic]] quasi-regular mapping $f : \mathbf{R}^n \rightarrow \mathbf{R}^n$, $n \ge 3$, is, in fact, a [[homeomorphism]] of $\mathbf{R}^n$. |
− | This result had been conjectured by M.A. Lavrent'ev in 1938. Note that the exponential function shows that there is no such result for | + | This result had been conjectured by M.A. Lavrent'ev in 1938. Note that the exponential function shows that there is no such result for $n=2$. In 1971, O. Martio, S. Rickman and J. Väisälä proved a stronger quantitative result: For $n \ge 3$ and $K > 1$ there exists a number $\psi(n,K) \in (0,1)$ , the ''radius of injectivity'', such that every locally injective $K$-quasi-regular mapping $f : B^n \rightarrow \mathbf{R}^n$, where $B^b = B^n(1)$ and $B^n(r) = \{ x \in \mathbf{R}^n : |x| \le r \}$, for $r > 0$, is injective in $B^n(\psi(n,K))$. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Rickman, "Quasiregular mappings" , ''Ergeb. Math. Grenzgeb.'' , '''26''' , Springer (1993)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.A. Zorich, "The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems" M. Vuorinen (ed.) , ''Quasiconformal Space Mappings'' , ''Lecture Notes in Mathematics'' , '''1508''' (1992) pp. 132–148</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> O. Martio, U. Sebro, "Universal radius of injectivity for locally quasiconformal mappings" ''Israel J. Math.'' , '''29''' (1978) pp. 17–23</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Rickman, "Quasiregular mappings" , ''Ergeb. Math. Grenzgeb.'' , '''26''' , Springer (1993)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> V.A. Zorich, "The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems" M. Vuorinen (ed.) , ''Quasiconformal Space Mappings'' , ''Lecture Notes in Mathematics'' , '''1508''' (1992) pp. 132–148</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> O. Martio, U. Sebro, "Universal radius of injectivity for locally quasiconformal mappings" ''Israel J. Math.'' , '''29''' (1978) pp. 17–23</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 19:29, 1 November 2016
In 1967, V.A. Zorich proved the following result for quasi-regular mappings in space: A locally homeomorphic quasi-regular mapping $f : \mathbf{R}^n \rightarrow \mathbf{R}^n$, $n \ge 3$, is, in fact, a homeomorphism of $\mathbf{R}^n$.
This result had been conjectured by M.A. Lavrent'ev in 1938. Note that the exponential function shows that there is no such result for $n=2$. In 1971, O. Martio, S. Rickman and J. Väisälä proved a stronger quantitative result: For $n \ge 3$ and $K > 1$ there exists a number $\psi(n,K) \in (0,1)$ , the radius of injectivity, such that every locally injective $K$-quasi-regular mapping $f : B^n \rightarrow \mathbf{R}^n$, where $B^b = B^n(1)$ and $B^n(r) = \{ x \in \mathbf{R}^n : |x| \le r \}$, for $r > 0$, is injective in $B^n(\psi(n,K))$.
References
[a1] | S. Rickman, "Quasiregular mappings" , Ergeb. Math. Grenzgeb. , 26 , Springer (1993) |
[a2] | V.A. Zorich, "The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems" M. Vuorinen (ed.) , Quasiconformal Space Mappings , Lecture Notes in Mathematics , 1508 (1992) pp. 132–148 |
[a3] | O. Martio, U. Sebro, "Universal radius of injectivity for locally quasiconformal mappings" Israel J. Math. , 29 (1978) pp. 17–23 |
Zorich theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zorich_theorem&oldid=15060