Difference between revisions of "Nuisance parameter"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | Any unknown parameter of a [[Probability distribution|probability distribution]] in a statistical problem connected with the study of other parameters of a given distribution. More precisely, for a realization of a random variable | + | <!-- |
+ | n0678801.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/N067/N.0607880 Nuisance parameter | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | Any unknown parameter of a [[Probability distribution|probability distribution]] in a statistical problem connected with the study of other parameters of a given distribution. More precisely, for a realization of a random variable $ X $, | ||
+ | taking values in a sample space $ ( \mathfrak X , \mathfrak B , {\mathsf P} _ \theta ) $, | ||
+ | $ \theta = ( \theta _ {1} \dots \theta _ {n} ) $, | ||
+ | $ \theta \in \mathbf R ^ {n} $, | ||
+ | suppose it is necessary to make a statistical inference about the parameters $ \theta _ {1} \dots \theta _ {k} $, | ||
+ | $ k < n $. | ||
+ | Then $ \theta _ {k+} 1 \dots \theta _ {n} $ | ||
+ | are nuisance parameters in the problem. For example, let $ X _ {1} \dots X _ {n} $ | ||
+ | be independent random variables, subject to the normal law $ \phi ( ( x - \xi ) / \sigma ) $, | ||
+ | with unknown parameters $ \xi $ | ||
+ | and $ \sigma ^ {2} $, | ||
+ | and one wishes to test the hypothesis $ H _ {0} $: | ||
+ | $ \xi = \xi _ {0} $, | ||
+ | where $ \xi _ {0} $ | ||
+ | is some fixed number. The unknown variance $ \sigma ^ {2} $ | ||
+ | is a nuisance parameter in the problem of testing $ H _ {0} $. | ||
+ | Another important example of a problem with a nuisance parameter is the [[Behrens–Fisher problem|Behrens–Fisher problem]]. Naturally, for the solution of a statistical problem with nuisance parameters it is desirable to be able to make a statistical inference not depending on these parameters. In the theory of statistical hypothesis testing one often achieves this by narrowing the class of tests intended for testing a certain hypothesis $ H _ {0} $ | ||
+ | in the presence of a nuisance parameter to a class of similar tests (cf. [[Statistical test|Statistical test]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. Linnik, "Statistical problems with nuisance parameters" , Amer. Math. Soc. (1968) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. Linnik, "Statistical problems with nuisance parameters" , Amer. Math. Soc. (1968) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.L. Lehmann, "Theory of point estimation" , Wiley (1983)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.L. Lehmann, "Theory of point estimation" , Wiley (1983)</TD></TR></table> |
Latest revision as of 08:03, 6 June 2020
Any unknown parameter of a probability distribution in a statistical problem connected with the study of other parameters of a given distribution. More precisely, for a realization of a random variable $ X $,
taking values in a sample space $ ( \mathfrak X , \mathfrak B , {\mathsf P} _ \theta ) $,
$ \theta = ( \theta _ {1} \dots \theta _ {n} ) $,
$ \theta \in \mathbf R ^ {n} $,
suppose it is necessary to make a statistical inference about the parameters $ \theta _ {1} \dots \theta _ {k} $,
$ k < n $.
Then $ \theta _ {k+} 1 \dots \theta _ {n} $
are nuisance parameters in the problem. For example, let $ X _ {1} \dots X _ {n} $
be independent random variables, subject to the normal law $ \phi ( ( x - \xi ) / \sigma ) $,
with unknown parameters $ \xi $
and $ \sigma ^ {2} $,
and one wishes to test the hypothesis $ H _ {0} $:
$ \xi = \xi _ {0} $,
where $ \xi _ {0} $
is some fixed number. The unknown variance $ \sigma ^ {2} $
is a nuisance parameter in the problem of testing $ H _ {0} $.
Another important example of a problem with a nuisance parameter is the Behrens–Fisher problem. Naturally, for the solution of a statistical problem with nuisance parameters it is desirable to be able to make a statistical inference not depending on these parameters. In the theory of statistical hypothesis testing one often achieves this by narrowing the class of tests intended for testing a certain hypothesis $ H _ {0} $
in the presence of a nuisance parameter to a class of similar tests (cf. Statistical test).
References
[1] | Yu.V. Linnik, "Statistical problems with nuisance parameters" , Amer. Math. Soc. (1968) (Translated from Russian) |
Comments
References
[a1] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1978) |
[a2] | E.L. Lehmann, "Theory of point estimation" , Wiley (1983) |
Nuisance parameter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nuisance_parameter&oldid=15002