Namespaces
Variants
Actions

Difference between revisions of "Homology manifold"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
h0478002.png
 +
$#A+1 = 78 n = 1
 +
$#C+1 = 78 : ~/encyclopedia/old_files/data/H047/H.0407800 Homology manifold,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''generalized manifold''
 
''generalized manifold''
  
A locally compact topological space whose local homological structure is analogous to the local structure of ordinary topological manifolds, including manifolds with boundary. More exactly, a homology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h0478002.png" />-manifold (a generalized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h0478004.png" />-manifold) over a group or a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h0478005.png" /> of coefficients is a locally compact topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h0478006.png" /> with finite homological dimension (cf. [[Homological dimension of a space|Homological dimension of a space]]) over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h0478007.png" /> and such that all its local homology groups (cf. [[Local homology|Local homology]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h0478008.png" /> are trivial if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h0478009.png" />, and are isomorphic either to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780010.png" /> or zero if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780011.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780012.png" /> is the direct limit of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780013.png" />, taken over all neighbourhoods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780014.png" /> of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780015.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780016.png" /> is a [[Homology theory|homology theory]] that satisfies all the [[Steenrod–Eilenberg axioms|Steenrod–Eilenberg axioms]], including the exactness axiom. In the category of locally contractible spaces the theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780017.png" />, considered with compact support, is isomorphic to the singular theory (cf. [[Singular homology|Singular homology]]). The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780018.png" /> automatically turn out to be the stalks of some sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780019.png" /> (cf. [[Sheaf theory|Sheaf theory]]), known as the orienting sheaf of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780020.png" />. A homology manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780021.png" /> is said to be orientable if the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780022.png" /> is isomorphic to the constant sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780023.png" />, and is said to be locally orientable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780024.png" /> is locally constant at the points where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780025.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780026.png" /> is a [[Principal ideal ring|principal ideal ring]] and if all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780027.png" /> are non-zero, a homology manifold over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780028.png" /> is always locally orientable. If a homology manifold over a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780029.png" /> is locally orientable, then the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780030.png" /> on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780031.png" /> is closed, nowhere dense and forms the boundary of the homology manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780032.png" />. A locally orientable homology manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780033.png" /> has the same homological properties as ordinary manifolds.
+
A locally compact topological space whose local homological structure is analogous to the local structure of ordinary topological manifolds, including manifolds with boundary. More exactly, a homology $  n $-
 +
manifold (a generalized $  n $-
 +
manifold) over a group or a module $  G $
 +
of coefficients is a locally compact topological space $  X $
 +
with finite homological dimension (cf. [[Homological dimension of a space|Homological dimension of a space]]) over $  G $
 +
and such that all its local homology groups (cf. [[Local homology|Local homology]]) $  H _ {p}  ^ {x} $
 +
are trivial if $  p \neq n $,  
 +
and are isomorphic either to $  G $
 +
or zero if $  p = n $.  
 +
Here, $  H _ {p}  ^ {x} $
 +
is the direct limit of the groups $  H _ {p} ( X, X \setminus  U;  G ) $,  
 +
taken over all neighbourhoods $  U $
 +
of the point $  x \in X $,  
 +
and $  H $
 +
is a [[Homology theory|homology theory]] that satisfies all the [[Steenrod–Eilenberg axioms|Steenrod–Eilenberg axioms]], including the exactness axiom. In the category of locally contractible spaces the theory $  H $,  
 +
considered with compact support, is isomorphic to the singular theory (cf. [[Singular homology|Singular homology]]). The groups $  H _ {n}  ^ {x} $
 +
automatically turn out to be the stalks of some sheaf $  {\mathcal H} _ {n} $(
 +
cf. [[Sheaf theory|Sheaf theory]]), known as the orienting sheaf of the manifold $  X $.  
 +
A homology manifold $  X $
 +
is said to be orientable if the sheaf $  {\mathcal H} _ {n} $
 +
is isomorphic to the constant sheaf $  X \times G $,  
 +
and is said to be locally orientable if $  {\mathcal H} _ {n} $
 +
is locally constant at the points where $  H _ {n}  ^ {x} \neq 0 $.  
 +
If $  G $
 +
is a [[Principal ideal ring|principal ideal ring]] and if all $  H _ {n}  ^ {x} $
 +
are non-zero, a homology manifold over $  G $
 +
is always locally orientable. If a homology manifold over a group $  G $
 +
is locally orientable, then the set of all $  x \in X $
 +
on which $  H _ {n}  ^ {x} = 0 $
 +
is closed, nowhere dense and forms the boundary of the homology manifold $  X $.  
 +
A locally orientable homology manifold $  X $
 +
has the same homological properties as ordinary manifolds.
  
E.g., the theorem on preservation of domain is valid for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780035.png" />, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780036.png" /> is nowhere dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780037.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780038.png" />, etc.
+
E.g., the theorem on preservation of domain is valid for $  X $,
 +
h   \mathop{\rm dim} _ {G}  X = n $,  
 +
the set $  A  ^  \prime  $
 +
is nowhere dense in $  X $
 +
if and only if h   \mathop{\rm dim} _ {G}  A \leq  n - 1 $,  
 +
etc.
  
For any homology manifold over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780039.png" /> there are natural isomorphisms ([[Poincaré duality|Poincaré duality]])
+
For any homology manifold over $  G $
 +
there are natural isomorphisms ([[Poincaré duality|Poincaré duality]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780040.png" /></td> </tr></table>
+
$$
 +
H _ {p} ( X; G)  = H ^ {n - p } ( X; {\mathcal H} _ {n} )
 +
$$
  
(cohomology with coefficients in a sheaf). Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780041.png" /> is any integer; however, the homological dimension of the homology manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780042.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780043.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780044.png" />, and thus the content of these isomorphisms is non-trivial only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780045.png" />. Similar isomorphisms are valid for homology and cohomology with support in any paracompactifying family (in particular, for homology and cohomology spaces with compact support). The condition of isomorphism between the non-zero stalks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780046.png" /> of the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780047.png" /> and the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780048.png" /> is immaterial. Instead of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780049.png" /> it is also possible to consider any locally constant sheaf of coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780050.png" /> with stalk <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780051.png" /> (this is accompanied by a change in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780052.png" />). Any open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780053.png" /> is a homology manifold. For this reason, the use of the equations
+
(cohomology with coefficients in a sheaf). Here $  p $
 +
is any integer; however, the homological dimension of the homology manifold $  X $
 +
over $  G $
 +
is $  n $,  
 +
and thus the content of these isomorphisms is non-trivial only if 0 \leq  p \leq  n $.  
 +
Similar isomorphisms are valid for homology and cohomology with support in any paracompactifying family (in particular, for homology and cohomology spaces with compact support). The condition of isomorphism between the non-zero stalks $  H _ {n}  ^ {x} $
 +
of the sheaf $  {\mathcal H} _ {n} $
 +
and the group $  G $
 +
is immaterial. Instead of the group $  G $
 +
it is also possible to consider any locally constant sheaf of coefficients $  {\mathcal G} $
 +
with stalk $  G $(
 +
this is accompanied by a change in $  {\mathcal H} _ {n} $).  
 +
Any open subset $  U \subset  X $
 +
is a homology manifold. For this reason, the use of the equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780054.png" /></td> </tr></table>
+
$$
 +
H _ {p} ( U; G)  = H _ {p} ( X, X \setminus  U; G),\  p \neq 0, n,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780055.png" /></td> </tr></table>
+
$$
 +
H _ {c}  ^ {q} ( U; G)  = H  ^ {q} ( X, X \setminus  U; G),
 +
$$
  
in the second one of which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780056.png" /> has compact closure, while the index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780057.png" /> indicates the compactness of the supports, makes it possible to obtain the isomorphisms
+
in the second one of which $  U $
 +
has compact closure, while the index $  c $
 +
indicates the compactness of the supports, makes it possible to obtain the isomorphisms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780058.png" /></td> </tr></table>
+
$$
 +
H _ {p} ( X, X \setminus  U; G)  = H ^ {n - p } ( U, {\mathcal H} _ {n} ),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780059.png" /></td> </tr></table>
+
$$
 +
H _ {p}  ^ {c} ( U; G)  = H ^ {n - p } ( X, X \setminus  U; {\mathcal H} _ {n} )
 +
$$
  
 
as special cases of Poincaré duality. Combination of the exact homology and cohomology sequences of the respective pairs also makes it possible to consider the isomorphisms
 
as special cases of Poincaré duality. Combination of the exact homology and cohomology sequences of the respective pairs also makes it possible to consider the isomorphisms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780060.png" /></td> </tr></table>
+
$$
 +
H _ {p} ( X \setminus  U; G)  = H ^ {n - p } ( X, U; {\mathcal H} _ {n} )
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780061.png" /></td> </tr></table>
+
$$
 +
H _ {p} ( X, U; G)  = H ^ {n - p } ( X \setminus  U; {\mathcal H} _ {n} )
 +
$$
  
 
— the latter one being a generalization of [[Alexander duality|Alexander duality]] — as special cases of Poincaré duality. Similar relations are also valid for homology and cohomology with supports in a given fixed family.
 
— the latter one being a generalization of [[Alexander duality|Alexander duality]] — as special cases of Poincaré duality. Similar relations are also valid for homology and cohomology with supports in a given fixed family.
Line 33: Line 111:
 
Let
 
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780062.png" /></td> </tr></table>
+
$$
 +
H _ {p} ( X; G)  = H _ {p + 1 }  ( X; G)  = 0 ,
 +
$$
  
let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780063.png" /> be compact and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780064.png" /> be a closed or an open subset. A consequence of the previous isomorphisms and of the exactness of the homology and cohomology is an isomorphism
+
let $  X $
 +
be compact and let $  Y $
 +
be a closed or an open subset. A consequence of the previous isomorphisms and of the exactness of the homology and cohomology is an isomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780065.png" /></td> </tr></table>
+
$$
 +
H _ {p}  ^ {c} ( X \setminus  Y; G)  = H ^ {n - p - 1 } ( Y; {\mathcal H} _ {n} ),
 +
$$
  
which represents the [[Pontryagin duality|Pontryagin duality]] for a closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780066.png" /> and the [[Steenrod duality|Steenrod duality]] for an open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780067.png" />. This and the property of continuity of cohomology implies that the isomorphism
+
which represents the [[Pontryagin duality|Pontryagin duality]] for a closed $  Y $
 +
and the [[Steenrod duality|Steenrod duality]] for an open $  Y $.  
 +
This and the property of continuity of cohomology implies that the isomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780068.png" /></td> </tr></table>
+
$$
 +
H _ {p}  ^ {c} ( X \setminus  Y; G)  = H ^ {n - p- 1 } ( Y; {\mathcal H} _ {n} )
 +
$$
  
is valid for any subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780069.png" /> (Sitnikov duality). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780070.png" /> is non-compact one must consider homology with supports closed in all of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780071.png" /> rather than homology with compact supports. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780072.png" /> is compact, reduced homology must be used for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780073.png" />.
+
is valid for any subset $  Y \subset  X $(
 +
Sitnikov duality). If $  X $
 +
is non-compact one must consider homology with supports closed in all of $  X $
 +
rather than homology with compact supports. If $  X $
 +
is compact, reduced homology must be used for $  p = 0 $.
  
Non-trivial examples of homology manifolds include  "factors"  of ordinary manifolds such as Euclidean spaces: If for a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780074.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780075.png" /> such that the Cartesian product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780076.png" /> is a homology manifold, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780077.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780078.png" /> are also homology manifolds. There are examples of homology manifolds that are not locally Euclidean at any one of their points. Homology manifolds play an important role in certain problems of transformation groups (cf. [[Transformation group|Transformation group]]), where they appear as [[Orbit|orbit]] spaces or as sets of fixed points.
+
Non-trivial examples of homology manifolds include  "factors"  of ordinary manifolds such as Euclidean spaces: If for a topological space $  X $
 +
there exists an $  Y $
 +
such that the Cartesian product $  X \times Y $
 +
is a homology manifold, then $  X $
 +
and $  Y $
 +
are also homology manifolds. There are examples of homology manifolds that are not locally Euclidean at any one of their points. Homology manifolds play an important role in certain problems of transformation groups (cf. [[Transformation group|Transformation group]]), where they appear as [[Orbit|orbit]] spaces or as sets of fixed points.
  
There exists a cohomological variant of the definition of generalized manifolds. Any cohomology manifold over a principal ideal ring is a homology manifold over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780079.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780080.png" /> is at most countable, then the converse proposition is true as well.
+
There exists a cohomological variant of the definition of generalized manifolds. Any cohomology manifold over a principal ideal ring is a homology manifold over $  G $,  
 +
and if $  G $
 +
is at most countable, then the converse proposition is true as well.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Čech,  "Théorie générale des variétés et de leurs théorèmes de dualité"  ''Ann. of Math. (2)'' , '''34'''  (1933)  pp. 621–730</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Lefschetz,  "On generalized manifolds"  ''Amer. J. Math.'' , '''55'''  (1933)  pp. 469–504</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.S. [P.S. Aleksandrov] Aleksandroff,  "On local properties of closed sets"  ''Ann. of Math. (2)'' , '''36''' :  1  (1935)  pp. 1–35</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.S. [P.S. Aleksandrov] Aleksandroff,  L.S. [L.S. Pontryagin] Pontrjagin,  "Les variétés à <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780081.png" /> dimensions généralisés"  ''C.R. Acad. Sci. Paris Sér. I Math.'' , '''202'''  (1936)  pp. 1327–1329</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P.A. Smith,  "Transformations of finite period"  ''Ann. of Math. (2)'' , '''40''' :  3  (1939)  pp. 690–711</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  E.G. Begle,  "Locally connected spaces and generalized manifolds"  ''Amer. J. Math.'' , '''64'''  (1942)  pp. 553–574</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  R. Wilder,  "Topology of manifolds" , Amer. Math. Soc.  (1949)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  A. Borel,  "The Poincaré duality in generalized manifolds"  ''Michigan Math. J.'' , '''4'''  (1957)  pp. 227–239</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  C.T. Yang,  "Transformation groups on a homological manifold"  ''Trans. Amer. Math. Soc.'' , '''87'''  (1958)  pp. 261–283</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  P.E. Conner,  E.E. Floyd,  "A characterization of generalized manifolds"  ''Michigan Math. J.'' , '''6'''  (1959)  pp. 33–43</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top">  F. Raymond,  "Separation and union theorems for generalized manifolds with boundary"  ''Michigan Math. J.'' , '''7'''  (1960)  pp. 7–21</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top">  G.E. Bredon,  "Orientation in generalized manifolds and application to the theory of transformation groups"  ''Michigan Math. J.'' , '''7'''  (1960)  pp. 35–64</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top">  A. Borel,  "Homology and duality in generalized manifolds"  A. Borel (ed.) , ''Seminar on transformation groups'' , Princeton Univ. Press  (1960)  pp. 23–33</TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top">  G.E. Bredon,  "Wilder manifolds are locally orientable"  ''Proc. Nat. Acad. Sci. USA'' , '''63''' :  4  (1969)  pp. 1079–1081</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Čech,  "Théorie générale des variétés et de leurs théorèmes de dualité"  ''Ann. of Math. (2)'' , '''34'''  (1933)  pp. 621–730</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Lefschetz,  "On generalized manifolds"  ''Amer. J. Math.'' , '''55'''  (1933)  pp. 469–504</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.S. [P.S. Aleksandrov] Aleksandroff,  "On local properties of closed sets"  ''Ann. of Math. (2)'' , '''36''' :  1  (1935)  pp. 1–35</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.S. [P.S. Aleksandrov] Aleksandroff,  L.S. [L.S. Pontryagin] Pontrjagin,  "Les variétés à <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780081.png" /> dimensions généralisés"  ''C.R. Acad. Sci. Paris Sér. I Math.'' , '''202'''  (1936)  pp. 1327–1329</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P.A. Smith,  "Transformations of finite period"  ''Ann. of Math. (2)'' , '''40''' :  3  (1939)  pp. 690–711</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  E.G. Begle,  "Locally connected spaces and generalized manifolds"  ''Amer. J. Math.'' , '''64'''  (1942)  pp. 553–574</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  R. Wilder,  "Topology of manifolds" , Amer. Math. Soc.  (1949)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  A. Borel,  "The Poincaré duality in generalized manifolds"  ''Michigan Math. J.'' , '''4'''  (1957)  pp. 227–239</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  C.T. Yang,  "Transformation groups on a homological manifold"  ''Trans. Amer. Math. Soc.'' , '''87'''  (1958)  pp. 261–283</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  P.E. Conner,  E.E. Floyd,  "A characterization of generalized manifolds"  ''Michigan Math. J.'' , '''6'''  (1959)  pp. 33–43</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top">  F. Raymond,  "Separation and union theorems for generalized manifolds with boundary"  ''Michigan Math. J.'' , '''7'''  (1960)  pp. 7–21</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top">  G.E. Bredon,  "Orientation in generalized manifolds and application to the theory of transformation groups"  ''Michigan Math. J.'' , '''7'''  (1960)  pp. 35–64</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top">  A. Borel,  "Homology and duality in generalized manifolds"  A. Borel (ed.) , ''Seminar on transformation groups'' , Princeton Univ. Press  (1960)  pp. 23–33</TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top">  G.E. Bredon,  "Wilder manifolds are locally orientable"  ''Proc. Nat. Acad. Sci. USA'' , '''63''' :  4  (1969)  pp. 1079–1081</TD></TR></table>

Latest revision as of 22:10, 5 June 2020


generalized manifold

A locally compact topological space whose local homological structure is analogous to the local structure of ordinary topological manifolds, including manifolds with boundary. More exactly, a homology $ n $- manifold (a generalized $ n $- manifold) over a group or a module $ G $ of coefficients is a locally compact topological space $ X $ with finite homological dimension (cf. Homological dimension of a space) over $ G $ and such that all its local homology groups (cf. Local homology) $ H _ {p} ^ {x} $ are trivial if $ p \neq n $, and are isomorphic either to $ G $ or zero if $ p = n $. Here, $ H _ {p} ^ {x} $ is the direct limit of the groups $ H _ {p} ( X, X \setminus U; G ) $, taken over all neighbourhoods $ U $ of the point $ x \in X $, and $ H $ is a homology theory that satisfies all the Steenrod–Eilenberg axioms, including the exactness axiom. In the category of locally contractible spaces the theory $ H $, considered with compact support, is isomorphic to the singular theory (cf. Singular homology). The groups $ H _ {n} ^ {x} $ automatically turn out to be the stalks of some sheaf $ {\mathcal H} _ {n} $( cf. Sheaf theory), known as the orienting sheaf of the manifold $ X $. A homology manifold $ X $ is said to be orientable if the sheaf $ {\mathcal H} _ {n} $ is isomorphic to the constant sheaf $ X \times G $, and is said to be locally orientable if $ {\mathcal H} _ {n} $ is locally constant at the points where $ H _ {n} ^ {x} \neq 0 $. If $ G $ is a principal ideal ring and if all $ H _ {n} ^ {x} $ are non-zero, a homology manifold over $ G $ is always locally orientable. If a homology manifold over a group $ G $ is locally orientable, then the set of all $ x \in X $ on which $ H _ {n} ^ {x} = 0 $ is closed, nowhere dense and forms the boundary of the homology manifold $ X $. A locally orientable homology manifold $ X $ has the same homological properties as ordinary manifolds.

E.g., the theorem on preservation of domain is valid for $ X $, $ h \mathop{\rm dim} _ {G} X = n $, the set $ A ^ \prime $ is nowhere dense in $ X $ if and only if $ h \mathop{\rm dim} _ {G} A \leq n - 1 $, etc.

For any homology manifold over $ G $ there are natural isomorphisms (Poincaré duality)

$$ H _ {p} ( X; G) = H ^ {n - p } ( X; {\mathcal H} _ {n} ) $$

(cohomology with coefficients in a sheaf). Here $ p $ is any integer; however, the homological dimension of the homology manifold $ X $ over $ G $ is $ n $, and thus the content of these isomorphisms is non-trivial only if $ 0 \leq p \leq n $. Similar isomorphisms are valid for homology and cohomology with support in any paracompactifying family (in particular, for homology and cohomology spaces with compact support). The condition of isomorphism between the non-zero stalks $ H _ {n} ^ {x} $ of the sheaf $ {\mathcal H} _ {n} $ and the group $ G $ is immaterial. Instead of the group $ G $ it is also possible to consider any locally constant sheaf of coefficients $ {\mathcal G} $ with stalk $ G $( this is accompanied by a change in $ {\mathcal H} _ {n} $). Any open subset $ U \subset X $ is a homology manifold. For this reason, the use of the equations

$$ H _ {p} ( U; G) = H _ {p} ( X, X \setminus U; G),\ p \neq 0, n, $$

$$ H _ {c} ^ {q} ( U; G) = H ^ {q} ( X, X \setminus U; G), $$

in the second one of which $ U $ has compact closure, while the index $ c $ indicates the compactness of the supports, makes it possible to obtain the isomorphisms

$$ H _ {p} ( X, X \setminus U; G) = H ^ {n - p } ( U, {\mathcal H} _ {n} ), $$

$$ H _ {p} ^ {c} ( U; G) = H ^ {n - p } ( X, X \setminus U; {\mathcal H} _ {n} ) $$

as special cases of Poincaré duality. Combination of the exact homology and cohomology sequences of the respective pairs also makes it possible to consider the isomorphisms

$$ H _ {p} ( X \setminus U; G) = H ^ {n - p } ( X, U; {\mathcal H} _ {n} ) $$

and

$$ H _ {p} ( X, U; G) = H ^ {n - p } ( X \setminus U; {\mathcal H} _ {n} ) $$

— the latter one being a generalization of Alexander duality — as special cases of Poincaré duality. Similar relations are also valid for homology and cohomology with supports in a given fixed family.

Let

$$ H _ {p} ( X; G) = H _ {p + 1 } ( X; G) = 0 , $$

let $ X $ be compact and let $ Y $ be a closed or an open subset. A consequence of the previous isomorphisms and of the exactness of the homology and cohomology is an isomorphism

$$ H _ {p} ^ {c} ( X \setminus Y; G) = H ^ {n - p - 1 } ( Y; {\mathcal H} _ {n} ), $$

which represents the Pontryagin duality for a closed $ Y $ and the Steenrod duality for an open $ Y $. This and the property of continuity of cohomology implies that the isomorphism

$$ H _ {p} ^ {c} ( X \setminus Y; G) = H ^ {n - p- 1 } ( Y; {\mathcal H} _ {n} ) $$

is valid for any subset $ Y \subset X $( Sitnikov duality). If $ X $ is non-compact one must consider homology with supports closed in all of $ X $ rather than homology with compact supports. If $ X $ is compact, reduced homology must be used for $ p = 0 $.

Non-trivial examples of homology manifolds include "factors" of ordinary manifolds such as Euclidean spaces: If for a topological space $ X $ there exists an $ Y $ such that the Cartesian product $ X \times Y $ is a homology manifold, then $ X $ and $ Y $ are also homology manifolds. There are examples of homology manifolds that are not locally Euclidean at any one of their points. Homology manifolds play an important role in certain problems of transformation groups (cf. Transformation group), where they appear as orbit spaces or as sets of fixed points.

There exists a cohomological variant of the definition of generalized manifolds. Any cohomology manifold over a principal ideal ring is a homology manifold over $ G $, and if $ G $ is at most countable, then the converse proposition is true as well.

References

[1] E. Čech, "Théorie générale des variétés et de leurs théorèmes de dualité" Ann. of Math. (2) , 34 (1933) pp. 621–730
[2] S. Lefschetz, "On generalized manifolds" Amer. J. Math. , 55 (1933) pp. 469–504
[3] P.S. [P.S. Aleksandrov] Aleksandroff, "On local properties of closed sets" Ann. of Math. (2) , 36 : 1 (1935) pp. 1–35
[4] P.S. [P.S. Aleksandrov] Aleksandroff, L.S. [L.S. Pontryagin] Pontrjagin, "Les variétés à dimensions généralisés" C.R. Acad. Sci. Paris Sér. I Math. , 202 (1936) pp. 1327–1329
[5] P.A. Smith, "Transformations of finite period" Ann. of Math. (2) , 40 : 3 (1939) pp. 690–711
[6] E.G. Begle, "Locally connected spaces and generalized manifolds" Amer. J. Math. , 64 (1942) pp. 553–574
[7] R. Wilder, "Topology of manifolds" , Amer. Math. Soc. (1949)
[8] A. Borel, "The Poincaré duality in generalized manifolds" Michigan Math. J. , 4 (1957) pp. 227–239
[9] C.T. Yang, "Transformation groups on a homological manifold" Trans. Amer. Math. Soc. , 87 (1958) pp. 261–283
[10] P.E. Conner, E.E. Floyd, "A characterization of generalized manifolds" Michigan Math. J. , 6 (1959) pp. 33–43
[11] F. Raymond, "Separation and union theorems for generalized manifolds with boundary" Michigan Math. J. , 7 (1960) pp. 7–21
[12] G.E. Bredon, "Orientation in generalized manifolds and application to the theory of transformation groups" Michigan Math. J. , 7 (1960) pp. 35–64
[13] A. Borel, "Homology and duality in generalized manifolds" A. Borel (ed.) , Seminar on transformation groups , Princeton Univ. Press (1960) pp. 23–33
[14] G.E. Bredon, "Wilder manifolds are locally orientable" Proc. Nat. Acad. Sci. USA , 63 : 4 (1969) pp. 1079–1081
How to Cite This Entry:
Homology manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homology_manifold&oldid=14967
This article was adapted from an original article by E.G. Sklyarenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article