Namespaces
Variants
Actions

Difference between revisions of "Strong Stieltjes moment problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 54 formulas out of 58 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
The strong Stieltjes moment problem for a given sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305901.png" /> of real numbers is concerned with finding real-valued, bounded, monotone non-decreasing functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305902.png" /> with infinitely many points of increase for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305903.png" /> such that
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305904.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
Out of 58 formulas, 54 were replaced by TEX code.-->
  
This problem, which generalizes the classical Stieltjes moment problem (where the given sequence is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305905.png" />; cf. also [[Krein condition|Krein condition]]), was first studied by W.B. Jones, W.J. Thron and H. Waadeland [[#References|[a1]]].
+
{{TEX|semi-auto}}{{TEX|partial}}
 +
The strong Stieltjes moment problem for a given sequence $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$ of real numbers is concerned with finding real-valued, bounded, monotone non-decreasing functions $\psi ( t )$ with infinitely many points of increase for $0 \leq t &lt; \infty$ such that
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305906.png" /> be the complex linear space spanned by the set of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305907.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305908.png" />, and define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305909.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059010.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059011.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059012.png" />. An element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059013.png" /> is called a Laurent polynomial. For a given sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059014.png" />, a necessary and sufficient condition for the strong Stieltjes moment problem to be solvable is that the [[Linear operator|linear operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059015.png" /> defined on the base elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059016.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059017.png" /> by
+
\begin{equation} \tag{a1} c _ { n } = \int _ { 0 } ^ { \infty } t ^ { n } d \psi ( t ) ,\; n = 0 , \pm 1 , \pm 2, \dots . \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059018.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
This problem, which generalizes the classical Stieltjes moment problem (where the given sequence is $\{ c _ { n } \} _ { n = 0 } ^ { \infty }$; cf. also [[Krein condition|Krein condition]]), was first studied by W.B. Jones, W.J. Thron and H. Waadeland [[#References|[a1]]].
  
is positive on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059019.png" />, i.e. for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059020.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059021.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059024.png" />. An equivalent condition is that if
+
Let $\Lambda _ { p , q }$ be the complex linear space spanned by the set of functions $\{ z ^ { j } \} _ { j = p } ^ { q }$ with $p \leq q$, and define $\Lambda _ { 2 m } = \Lambda - m , m$ and $\Lambda _ { 2 m + 1 } = \Lambda_{ - ( m + 1 ) , m}$ for $m = 0,1 , \ldots$, and $\Lambda = \cup _ { n = 0 } ^ { \infty } \Lambda _ { n }$. An element of $\Lambda$ is called a Laurent polynomial. For a given sequence $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$, a necessary and sufficient condition for the strong Stieltjes moment problem to be solvable is that the [[Linear operator|linear operator]] $M$ defined on the base elements $z ^ { n }$ of $\Lambda$ by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059025.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
\begin{equation} \tag{a2} M [ z ^ { n } ] = c _ { n } , n = 0 , \pm 1 , \pm 2 , \dots, \end{equation}
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059027.png" />, are the Hankel determinants associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059028.png" /> (cf. also [[Hankel matrix|Hankel matrix]]), then
+
is positive on $( 0 , \infty )$, i.e. for any $L \in \Lambda$ such that $L ( z ) \geq 0$ for $z \in ( 0 , \infty )$ and $L ( z ) \not\equiv 0$, then $M [ L ] &gt; 0$. An equivalent condition is that if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059029.png" /></td> </tr></table>
+
\begin{equation} \tag{a3} H _ { 0 } ^ { ( m ) } = 1 ,\, H _ { k } ^ { ( m ) } = \operatorname { det } ( c_{ m + i + j} ) _ { i ,\, j = 0 } ^ { k - 1 } \end{equation}
  
Orthogonal Laurent polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059030.png" /> may be defined with respect to the [[Inner product|inner product]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059031.png" /> and are given by:
+
for $m = 0 , \pm 1 , \pm 2 , \dots$, $k = 1,2 , \dots$, are the Hankel determinants associated with $\{ c _ { k } \}$ (cf. also [[Hankel matrix|Hankel matrix]]), then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059032.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
\begin{equation*} H _ { k } ^ { ( m ) } &gt; 0 , m = 0 , \pm 1 , \pm 2 , \ldots , k = 1,2 ,\dots . \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059033.png" /></td> </tr></table>
+
Orthogonal Laurent polynomials $\{ Q _ { n } ( z ) \in \Lambda _ { n } : n = 0,1 , \ldots \}$ may be defined with respect to the [[Inner product|inner product]] $\langle P , Q \rangle \equiv M [ P ( z ) Q ( z ) ]$ and are given by:
 +
 
 +
\begin{equation} \tag{a4} Q _ { 2 n } ( z ) = \frac { 1 } { H _ { 2 n } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c _ { - 2 n } } &amp; { \cdots } &amp; { c _ { - 1 } } &amp; { z ^ { - n } } \\ { \vdots } &amp; { \square } &amp; { \vdots } &amp; { \vdots } \\ { c _ { - 1 } } &amp; { \cdots } &amp; { c _ { 2 n - 2 } } &amp; { z ^ { n - 1 } } \\ { c_0 } &amp; { \cdots } &amp; { c _ { 2 n - 1 } } &amp; { z ^ { n } e n d } \end{array} \right|, \end{equation}
 +
 
 +
\begin{equation*} n = 1,2 , \dots , \end{equation*}
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
+
\begin{equation} \tag{a5} Q _ { 2 n + 1 } ( z ) = \frac { - 1 } { H _ { 2 n + 1 } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c_{ - 2 n - 1} } &amp; { \cdots } &amp; { c_{ - 1} } &amp; { z ^ { - n - 1 } } \\ { \vdots } &amp; { \square } &amp; { \vdots } &amp; { \vdots } \\ { c_{ - 1} } &amp; { \cdots } &amp; { c _ { 2 n - 1 } } &amp; { z ^ { n - 1 } } \\ { c_0 } &amp; { \cdots } &amp; { c _ { 2 n } } &amp; { z ^ { n } e n d } \end{array} \right|, \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059035.png" /></td> </tr></table>
+
\begin{equation*} n = 0,1 , \ldots , \end{equation*}
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059036.png" />. Corresponding associated orthogonal Laurent polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059037.png" /> are defined by
+
and $Q _ { 0 } ( z ) = 1$. Corresponding associated orthogonal Laurent polynomials $\{ P _ { n } \}$ are defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059038.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
+
\begin{equation} \tag{a6} P _ { n } = M \left[ \frac { Q _ { n } ( t ) - Q _ { n } ( z ) } { t - z } \right] , n = 0,1 ,\dots . \end{equation}
  
The rational functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059039.png" /> are the convergents of the positive T-fraction [[#References|[a3]]],
+
The rational functions $( - z ) P _ { n } ( - z ) / Q _ { n } ( - z )$ are the convergents of the positive T-fraction [[#References|[a3]]],
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059040.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
+
\begin{equation} \tag{a7} \frac { F _ { 1 } z } { 1 + G _ { 1 } z } \square _ { + } \frac { F _ { 2 } z } { 1 + G _ { 2 } z } \square _ { + } \frac { F _ { 3 } } { 1 + G _ { 3 } z } \square _ { + } \dots \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059041.png" /></td> </tr></table>
+
\begin{equation*} ( F _ { n } &gt; 0 , G _ { n } &gt; 0 ), \end{equation*}
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059042.png" /></td> </tr></table>
+
\begin{equation*} F _ { n } = \frac { H _ { n } ^ { ( - n ) } H _ { n-2 } ^ { ( - n + 3 ) } } { H _ { n-1 } ^ { ( - n + 2 ) } H _ { n - 1 } ^ { ( - n + 1 ) } }, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059043.png" /></td> </tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059043.png"/></td> </tr></table>
  
 
which corresponds to the formal pair of power series,
 
which corresponds to the formal pair of power series,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059044.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a8)</td></tr></table>
+
\begin{equation} \tag{a8} L _ { 0 } = - \sum _ { k = 1 } ^ { \infty } c _ { - k } ( - z ) ^ { k } , L _ { \infty } = \sum _ { k = 0 } ^ { \infty } c _ { k } ( - z ) ^ { - k }. \end{equation}
  
 
The T-fraction is equivalent to the [[Continued fraction|continued fraction]]
 
The T-fraction is equivalent to the [[Continued fraction|continued fraction]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059045.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a9)</td></tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059045.png"/></td> <td style="width:5%;text-align:right;" valign="top">(a9)</td></tr></table>
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059046.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a10)</td></tr></table>
+
\begin{equation} \tag{a10} F _ { n } = \frac { 1 } { e _ { n } e _ { n  - 1} } ,\, G _ { n } = \frac { d _ { n } } { e _ { n } } ( e_{ 0} = 1 ), \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059047.png" /></td> </tr></table>
+
\begin{equation*} n = 1,2 , \dots \end{equation*}
  
The following result may then be proved [[#References|[a1]]]: The solution of the strong Stieltjes moment problem (a1) is unique if and only if at least one of the series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059049.png" /> diverges, and then
+
The following result may then be proved [[#References|[a1]]]: The solution of the strong Stieltjes moment problem (a1) is unique if and only if at least one of the series $\sum  e_{ n}$, $\sum d _ { n }$ diverges, and then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059050.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a11)</td></tr></table>
+
\begin{equation} \tag{a11} \operatorname { lim } _ { n \rightarrow \infty } \left[ ( - z ) \frac { P _ { n } ( - z ) } { Q _ { n } ( - z ) } \right] = z \int _ { 0 } ^ { \infty } \frac { d \psi ( t ) } { z + t }, \end{equation}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059051.png" /> is this unique solution.The convergence is uniform on every compact subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059052.png" />.
+
where $\psi ( t )$ is this unique solution.The convergence is uniform on every compact subset of $R = \{ z : | \operatorname { arg } z | &lt; \pi \}$.
  
 
The strong Stieltjes moment problem is said to be determinate when it has a unique solution and indeterminate otherwise. A detailed discussion of the latter case has been given in [[#References|[a4]]].
 
The strong Stieltjes moment problem is said to be determinate when it has a unique solution and indeterminate otherwise. A detailed discussion of the latter case has been given in [[#References|[a4]]].
Line 69: Line 77:
 
A classic example of a strong Stieltjes moment problem is the log-normal distribution,
 
A classic example of a strong Stieltjes moment problem is the log-normal distribution,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059053.png" /></td> </tr></table>
+
\begin{equation*} \frac { d \psi ( t ) } { d t } = \frac { q ^ { 1 / 2 } } { 2 \kappa \sqrt { \pi } } e ^ { - ( \operatorname { ln } t / 2 \kappa ) ^ { 2 } } ,\, q = e ^ { - 2 \kappa ^ { 2 } }. \end{equation*}
  
(Cf. also [[Normal distribution|Normal distribution]].) The corresponding sequence of moments is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059054.png" />, where
+
(Cf. also [[Normal distribution|Normal distribution]].) The corresponding sequence of moments is $\{ c _ { n } \}$, where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059055.png" /></td> </tr></table>
+
\begin{equation*} c _ { n } = q ^ { - n - n ^ { 2 } / 2 } , n = 0 , \pm 1 , \pm 2 , \ldots , \end{equation*}
  
 
and the strong Stieltjes moment problem in this case is indeterminate [[#References|[a5]]]. The moments corresponding to the log-normal distribution are related to a subclass of strong Stieltjes moment problems where
 
and the strong Stieltjes moment problem in this case is indeterminate [[#References|[a5]]]. The moments corresponding to the log-normal distribution are related to a subclass of strong Stieltjes moment problems where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059056.png" /></td> </tr></table>
+
\begin{equation*} c _ { - n } = c _ { n } , \quad n = 1,2 , \dots . \end{equation*}
  
 
This subclass has been called strong symmetric Stieltjes moment problems by A.K. Common and J. McCabe, who studied properties of the related continued fractions [[#References|[a6]]]. Other subclasses have been investigated in [[#References|[a7]]].
 
This subclass has been called strong symmetric Stieltjes moment problems by A.K. Common and J. McCabe, who studied properties of the related continued fractions [[#References|[a6]]]. Other subclasses have been investigated in [[#References|[a7]]].
Line 84: Line 92:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W.B. Jones,  O. Njåstad,  W.J. Thron,  "A strong Stieltjes moment problem"  ''Trans. Amer. Math. Soc.'' , '''261'''  (1980)  pp. 503–528</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W.B. Jones,  O. Njåstad,  W.J. Thron,  "Continued fractions and strong Hamburger moment problems"  ''Proc. London Math. Soc.'' , '''47'''  (1983)  pp. 105–123</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W.B. Jones,  W.J. Thron,  "Continued fractions: Analytic theory and applications" , ''Encycl. Math. Appl.'' , '''11''' , Addison-Wesley  (1980)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  O. Njåstad,  "Solutions of the strong Stieltjes moment problem"  ''Meth. Appl. Anal.'' , '''2'''  (1995)  pp. 320–347</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  S.C. Cooper,  W.B. Jones,  W.J. Thron,  "Orthogonal Laurent polynomials and continued fractions associated with log-normal distributions"  ''J. Comput. Appl. Math.'' , '''32'''  (1990)  pp. 39–46</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A.K. Common,  J. McCabe,  "The symmetric strong moment problem"  ''J. Comput. Appl. Math.'' , '''67'''  (1996)  pp. 327–341</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  A. Sri Ranga,  E.X.L. de Andrade,  J. McCabe,  "Some consequences of symmetry in strong distributions"  ''J. Math. Anal. Appl.'' , '''193'''  (1995)  pp. 158–168</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  W.B. Jones,  O. Njåstad,  W.J. Thron,  "A strong Stieltjes moment problem"  ''Trans. Amer. Math. Soc.'' , '''261'''  (1980)  pp. 503–528</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  W.B. Jones,  O. Njåstad,  W.J. Thron,  "Continued fractions and strong Hamburger moment problems"  ''Proc. London Math. Soc.'' , '''47'''  (1983)  pp. 105–123</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  W.B. Jones,  W.J. Thron,  "Continued fractions: Analytic theory and applications" , ''Encycl. Math. Appl.'' , '''11''' , Addison-Wesley  (1980)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  O. Njåstad,  "Solutions of the strong Stieltjes moment problem"  ''Meth. Appl. Anal.'' , '''2'''  (1995)  pp. 320–347</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  S.C. Cooper,  W.B. Jones,  W.J. Thron,  "Orthogonal Laurent polynomials and continued fractions associated with log-normal distributions"  ''J. Comput. Appl. Math.'' , '''32'''  (1990)  pp. 39–46</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  A.K. Common,  J. McCabe,  "The symmetric strong moment problem"  ''J. Comput. Appl. Math.'' , '''67'''  (1996)  pp. 327–341</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  A. Sri Ranga,  E.X.L. de Andrade,  J. McCabe,  "Some consequences of symmetry in strong distributions"  ''J. Math. Anal. Appl.'' , '''193'''  (1995)  pp. 158–168</td></tr></table>

Revision as of 16:57, 1 July 2020

The strong Stieltjes moment problem for a given sequence $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$ of real numbers is concerned with finding real-valued, bounded, monotone non-decreasing functions $\psi ( t )$ with infinitely many points of increase for $0 \leq t < \infty$ such that

\begin{equation} \tag{a1} c _ { n } = \int _ { 0 } ^ { \infty } t ^ { n } d \psi ( t ) ,\; n = 0 , \pm 1 , \pm 2, \dots . \end{equation}

This problem, which generalizes the classical Stieltjes moment problem (where the given sequence is $\{ c _ { n } \} _ { n = 0 } ^ { \infty }$; cf. also Krein condition), was first studied by W.B. Jones, W.J. Thron and H. Waadeland [a1].

Let $\Lambda _ { p , q }$ be the complex linear space spanned by the set of functions $\{ z ^ { j } \} _ { j = p } ^ { q }$ with $p \leq q$, and define $\Lambda _ { 2 m } = \Lambda - m , m$ and $\Lambda _ { 2 m + 1 } = \Lambda_{ - ( m + 1 ) , m}$ for $m = 0,1 , \ldots$, and $\Lambda = \cup _ { n = 0 } ^ { \infty } \Lambda _ { n }$. An element of $\Lambda$ is called a Laurent polynomial. For a given sequence $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$, a necessary and sufficient condition for the strong Stieltjes moment problem to be solvable is that the linear operator $M$ defined on the base elements $z ^ { n }$ of $\Lambda$ by

\begin{equation} \tag{a2} M [ z ^ { n } ] = c _ { n } , n = 0 , \pm 1 , \pm 2 , \dots, \end{equation}

is positive on $( 0 , \infty )$, i.e. for any $L \in \Lambda$ such that $L ( z ) \geq 0$ for $z \in ( 0 , \infty )$ and $L ( z ) \not\equiv 0$, then $M [ L ] > 0$. An equivalent condition is that if

\begin{equation} \tag{a3} H _ { 0 } ^ { ( m ) } = 1 ,\, H _ { k } ^ { ( m ) } = \operatorname { det } ( c_{ m + i + j} ) _ { i ,\, j = 0 } ^ { k - 1 } \end{equation}

for $m = 0 , \pm 1 , \pm 2 , \dots$, $k = 1,2 , \dots$, are the Hankel determinants associated with $\{ c _ { k } \}$ (cf. also Hankel matrix), then

\begin{equation*} H _ { k } ^ { ( m ) } > 0 , m = 0 , \pm 1 , \pm 2 , \ldots , k = 1,2 ,\dots . \end{equation*}

Orthogonal Laurent polynomials $\{ Q _ { n } ( z ) \in \Lambda _ { n } : n = 0,1 , \ldots \}$ may be defined with respect to the inner product $\langle P , Q \rangle \equiv M [ P ( z ) Q ( z ) ]$ and are given by:

\begin{equation} \tag{a4} Q _ { 2 n } ( z ) = \frac { 1 } { H _ { 2 n } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c _ { - 2 n } } & { \cdots } & { c _ { - 1 } } & { z ^ { - n } } \\ { \vdots } & { \square } & { \vdots } & { \vdots } \\ { c _ { - 1 } } & { \cdots } & { c _ { 2 n - 2 } } & { z ^ { n - 1 } } \\ { c_0 } & { \cdots } & { c _ { 2 n - 1 } } & { z ^ { n } e n d } \end{array} \right|, \end{equation}

\begin{equation*} n = 1,2 , \dots , \end{equation*}

and

\begin{equation} \tag{a5} Q _ { 2 n + 1 } ( z ) = \frac { - 1 } { H _ { 2 n + 1 } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c_{ - 2 n - 1} } & { \cdots } & { c_{ - 1} } & { z ^ { - n - 1 } } \\ { \vdots } & { \square } & { \vdots } & { \vdots } \\ { c_{ - 1} } & { \cdots } & { c _ { 2 n - 1 } } & { z ^ { n - 1 } } \\ { c_0 } & { \cdots } & { c _ { 2 n } } & { z ^ { n } e n d } \end{array} \right|, \end{equation}

\begin{equation*} n = 0,1 , \ldots , \end{equation*}

and $Q _ { 0 } ( z ) = 1$. Corresponding associated orthogonal Laurent polynomials $\{ P _ { n } \}$ are defined by

\begin{equation} \tag{a6} P _ { n } = M \left[ \frac { Q _ { n } ( t ) - Q _ { n } ( z ) } { t - z } \right] , n = 0,1 ,\dots . \end{equation}

The rational functions $( - z ) P _ { n } ( - z ) / Q _ { n } ( - z )$ are the convergents of the positive T-fraction [a3],

\begin{equation} \tag{a7} \frac { F _ { 1 } z } { 1 + G _ { 1 } z } \square _ { + } \frac { F _ { 2 } z } { 1 + G _ { 2 } z } \square _ { + } \frac { F _ { 3 } } { 1 + G _ { 3 } z } \square _ { + } \dots \end{equation}

\begin{equation*} ( F _ { n } > 0 , G _ { n } > 0 ), \end{equation*}

where

\begin{equation*} F _ { n } = \frac { H _ { n } ^ { ( - n ) } H _ { n-2 } ^ { ( - n + 3 ) } } { H _ { n-1 } ^ { ( - n + 2 ) } H _ { n - 1 } ^ { ( - n + 1 ) } }, \end{equation*}

which corresponds to the formal pair of power series,

\begin{equation} \tag{a8} L _ { 0 } = - \sum _ { k = 1 } ^ { \infty } c _ { - k } ( - z ) ^ { k } , L _ { \infty } = \sum _ { k = 0 } ^ { \infty } c _ { k } ( - z ) ^ { - k }. \end{equation}

The T-fraction is equivalent to the continued fraction

(a9)

where

\begin{equation} \tag{a10} F _ { n } = \frac { 1 } { e _ { n } e _ { n - 1} } ,\, G _ { n } = \frac { d _ { n } } { e _ { n } } ( e_{ 0} = 1 ), \end{equation}

\begin{equation*} n = 1,2 , \dots \end{equation*}

The following result may then be proved [a1]: The solution of the strong Stieltjes moment problem (a1) is unique if and only if at least one of the series $\sum e_{ n}$, $\sum d _ { n }$ diverges, and then

\begin{equation} \tag{a11} \operatorname { lim } _ { n \rightarrow \infty } \left[ ( - z ) \frac { P _ { n } ( - z ) } { Q _ { n } ( - z ) } \right] = z \int _ { 0 } ^ { \infty } \frac { d \psi ( t ) } { z + t }, \end{equation}

where $\psi ( t )$ is this unique solution.The convergence is uniform on every compact subset of $R = \{ z : | \operatorname { arg } z | < \pi \}$.

The strong Stieltjes moment problem is said to be determinate when it has a unique solution and indeterminate otherwise. A detailed discussion of the latter case has been given in [a4].

A classic example of a strong Stieltjes moment problem is the log-normal distribution,

\begin{equation*} \frac { d \psi ( t ) } { d t } = \frac { q ^ { 1 / 2 } } { 2 \kappa \sqrt { \pi } } e ^ { - ( \operatorname { ln } t / 2 \kappa ) ^ { 2 } } ,\, q = e ^ { - 2 \kappa ^ { 2 } }. \end{equation*}

(Cf. also Normal distribution.) The corresponding sequence of moments is $\{ c _ { n } \}$, where

\begin{equation*} c _ { n } = q ^ { - n - n ^ { 2 } / 2 } , n = 0 , \pm 1 , \pm 2 , \ldots , \end{equation*}

and the strong Stieltjes moment problem in this case is indeterminate [a5]. The moments corresponding to the log-normal distribution are related to a subclass of strong Stieltjes moment problems where

\begin{equation*} c _ { - n } = c _ { n } , \quad n = 1,2 , \dots . \end{equation*}

This subclass has been called strong symmetric Stieltjes moment problems by A.K. Common and J. McCabe, who studied properties of the related continued fractions [a6]. Other subclasses have been investigated in [a7].

Cf. also Moment problem.

References

[a1] W.B. Jones, O. Njåstad, W.J. Thron, "A strong Stieltjes moment problem" Trans. Amer. Math. Soc. , 261 (1980) pp. 503–528
[a2] W.B. Jones, O. Njåstad, W.J. Thron, "Continued fractions and strong Hamburger moment problems" Proc. London Math. Soc. , 47 (1983) pp. 105–123
[a3] W.B. Jones, W.J. Thron, "Continued fractions: Analytic theory and applications" , Encycl. Math. Appl. , 11 , Addison-Wesley (1980)
[a4] O. Njåstad, "Solutions of the strong Stieltjes moment problem" Meth. Appl. Anal. , 2 (1995) pp. 320–347
[a5] S.C. Cooper, W.B. Jones, W.J. Thron, "Orthogonal Laurent polynomials and continued fractions associated with log-normal distributions" J. Comput. Appl. Math. , 32 (1990) pp. 39–46
[a6] A.K. Common, J. McCabe, "The symmetric strong moment problem" J. Comput. Appl. Math. , 67 (1996) pp. 327–341
[a7] A. Sri Ranga, E.X.L. de Andrade, J. McCabe, "Some consequences of symmetry in strong distributions" J. Math. Anal. Appl. , 193 (1995) pp. 158–168
How to Cite This Entry:
Strong Stieltjes moment problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Strong_Stieltjes_moment_problem&oldid=14838
This article was adapted from an original article by A.K. Common (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article