|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n0677401.png" /> of a [[Group|group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n0677402.png" /> in a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n0677403.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n0677404.png" />''
| + | <!-- |
| + | n0677401.png |
| + | $#A+1 = 29 n = 0 |
| + | $#C+1 = 29 : ~/encyclopedia/old_files/data/N067/N.0607740 Normalizer of a subset |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | '' $ M $ |
| + | of a [[Group|group]] $ G $ |
| + | in a subgroup $ H $ |
| + | of $ G $'' |
| | | |
| The set | | The set |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n0677405.png" /></td> </tr></table>
| + | $$ |
| + | N _ {H} ( M) = \ |
| + | \{ {h } : {h \in H , h ^ {-} 1 M h = M } \} |
| + | , |
| + | $$ |
| | | |
− | that is, the set of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n0677406.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n0677407.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n0677408.png" /> (the conjugate of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n0677409.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774010.png" />) for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774011.png" /> also belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774012.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774014.png" /> the normalizer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774015.png" /> is a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774016.png" />. An important special case is the normalizer of a subgroup of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774018.png" />. A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774019.png" /> of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774020.png" /> is normal (or invariant, cf. [[Invariant subgroup|Invariant subgroup]]) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774021.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774022.png" />. The normalizer of a set consisting of a single element is the same as its [[Centralizer|centralizer]]. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774024.png" /> the cardinality of the class of subsets conjugate to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774025.png" /> by elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774026.png" /> (that is, subsets of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774028.png" />) is equal to the index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067740/n06774029.png" />. | + | that is, the set of all elements $ h $ |
| + | of $ H $ |
| + | such that $ h ^ {-} 1 m h $( |
| + | the conjugate of $ m $ |
| + | by $ h $) |
| + | for every $ m \in M $ |
| + | also belongs to $ M $. |
| + | For any $ M $ |
| + | and $ H $ |
| + | the normalizer $ N _ {H} ( M) $ |
| + | is a subgroup of $ H $. |
| + | An important special case is the normalizer of a subgroup of a group $ G $ |
| + | in $ G $. |
| + | A subgroup $ A $ |
| + | of a group $ G $ |
| + | is normal (or invariant, cf. [[Invariant subgroup|Invariant subgroup]]) in $ G $ |
| + | if and only if $ N _ {G} ( A) = G $. |
| + | The normalizer of a set consisting of a single element is the same as its [[Centralizer|centralizer]]. For any $ H $ |
| + | and $ M $ |
| + | the cardinality of the class of subsets conjugate to $ M $ |
| + | by elements of $ H $( |
| + | that is, subsets of the form $ h ^ {-} 1 M h $, |
| + | $ h \in H $) |
| + | is equal to the index $ | H : N _ {H} ( M) | $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.I. Kargapolov, J.I. [Yu.I. Merzlyakov] Merzljakov, "Fundamentals of the theory of groups" , Springer (1979) (Translated from Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.I. Kargapolov, J.I. [Yu.I. Merzlyakov] Merzljakov, "Fundamentals of the theory of groups" , Springer (1979) (Translated from Russian)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.J.S. Robinson, "A course in the theory of groups" , Springer (1980)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.J.S. Robinson, "A course in the theory of groups" , Springer (1980)</TD></TR></table> |
Latest revision as of 08:03, 6 June 2020
$ M $
of a group $ G $
in a subgroup $ H $
of $ G $
The set
$$
N _ {H} ( M) = \
\{ {h } : {h \in H , h ^ {-} 1 M h = M } \}
,
$$
that is, the set of all elements $ h $
of $ H $
such that $ h ^ {-} 1 m h $(
the conjugate of $ m $
by $ h $)
for every $ m \in M $
also belongs to $ M $.
For any $ M $
and $ H $
the normalizer $ N _ {H} ( M) $
is a subgroup of $ H $.
An important special case is the normalizer of a subgroup of a group $ G $
in $ G $.
A subgroup $ A $
of a group $ G $
is normal (or invariant, cf. Invariant subgroup) in $ G $
if and only if $ N _ {G} ( A) = G $.
The normalizer of a set consisting of a single element is the same as its centralizer. For any $ H $
and $ M $
the cardinality of the class of subsets conjugate to $ M $
by elements of $ H $(
that is, subsets of the form $ h ^ {-} 1 M h $,
$ h \in H $)
is equal to the index $ | H : N _ {H} ( M) | $.
References
[1] | M.I. Kargapolov, J.I. [Yu.I. Merzlyakov] Merzljakov, "Fundamentals of the theory of groups" , Springer (1979) (Translated from Russian) |
References
[a1] | D.J.S. Robinson, "A course in the theory of groups" , Springer (1980) |
How to Cite This Entry:
Normalizer of a subset. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normalizer_of_a_subset&oldid=14809
This article was adapted from an original article by N.N. Vil'yams (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article