Namespaces
Variants
Actions

Difference between revisions of "Fractional steps, method of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
f0412901.png
 +
$#A+1 = 23 n = 0
 +
$#C+1 = 23 : ~/encyclopedia/old_files/data/F041/F.0401290 Fractional steps, method of
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A method for constructing economical (with respect to the number of operations) stable difference schemes to solve differential equations of mathematical physics.
 
A method for constructing economical (with respect to the number of operations) stable difference schemes to solve differential equations of mathematical physics.
  
 
As the dimension of the problem increases, the number of operations needed to obtain a numerical solution increases correspondingly, both on account of the larger number of points and owing to the logical difficulties in compiling the computation program. For the system of differential equations
 
As the dimension of the problem increases, the number of operations needed to obtain a numerical solution increases correspondingly, both on account of the larger number of points and owing to the logical difficulties in compiling the computation program. For the system of differential equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412901.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412902.png" /> is a differential operator, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412903.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412904.png" />, the absolutely stable implicit schemes of simple approximation
+
\frac{\partial  u }{\partial  t }
 +
  = L u ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412905.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
where  $  L = L ( \partial  / \partial  x ) $
 +
is a differential operator,  $  u = u ( x , t ) $,
 +
$  x = ( x _ {1} \dots x _ {n} ) $,
 +
the absolutely stable implicit schemes of simple approximation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412906.png" /></td> </tr></table>
+
$$ \tag{2 }
  
become ineffective in the case of multi-dimensional problems. In some cases a very small step in the unit of time is needed, in others finding each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412907.png" /> requires <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412908.png" /> operations, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412909.png" /> is the number of points per measurement, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129010.png" /> is the number of spatial measurements and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129011.png" /> strongly increases as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129012.png" /> increases.
+
\frac{u  ^ {n+} 1 - u  ^ {n} } \tau
 +
  =  \Lambda _ {1} u  ^ {n+} 1 + \Lambda _ {0} u  ^ {n} ,
 +
$$
 +
 
 +
$$
 +
\Lambda _ {0}  \sim  L _ {0} ,\  \Lambda _ {1}  \sim \
 +
L _ {1} ,\  L _ {0} + L _ {1}  =  L ,
 +
$$
 +
 
 +
become ineffective in the case of multi-dimensional problems. In some cases a very small step in the unit of time is needed, in others finding each $  u  ^ {n+} 1 $
 +
requires $  \textrm{ const } \cdot N ^ {\alpha ( m) } $
 +
operations, where $  N $
 +
is the number of points per measurement, $  m $
 +
is the number of spatial measurements and $  \alpha ( m) $
 +
strongly increases as $  m $
 +
increases.
  
 
For obtaining economical stable difference schemes methods are proposed based on the following ideas:
 
For obtaining economical stable difference schemes methods are proposed based on the following ideas:
Line 25: Line 57:
 
the splitting scheme:
 
the splitting scheme:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\left . \begin{array}{c}
 +
 
 +
\frac{u  ^ {n+} 1/2 - u  ^ {n} } \tau
 +
  = \Lambda _ {11} u  ^ {n+} 1/2 + \Lambda _ {01} u  ^ {n} , \\
 +
 +
\frac{u  ^ {n+} 1 - u  ^ {n+} 1/2 } \tau
 +
  =  \Lambda _ {12} u  ^ {n+} 1 + \Lambda _ {02} u  ^ {n+} 1/2 ;  
 +
\end{array}
 +
\right \}
 +
$$
  
 
the approximate factorization scheme:
 
the approximate factorization scheme:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
( E - \tau \Lambda _ {11} ) ( E - \tau \Lambda _ {12} ) u  ^ {n+} 1  = ( E
 +
+ t \Omega ) u  ^ {n} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129015.png" /></td> </tr></table>
+
$$
 +
\Lambda _ {11} + \Lambda _ {12}  = \Lambda _ {1} ,\  \Omega  \sim  \Lambda _ {0} ;
 +
$$
  
 
the weak approximation scheme:
 
the weak approximation scheme:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129017.png" /></td> </tr></table>
+
\frac{\partial  u }{\partial  t }
 +
  = ( \alpha _ {1} L _ {1} + \alpha _ {2} L _ {1} ) u  = L u ,\  L  = L _ {0} + L _ {1} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129018.png" /></td> </tr></table>
+
$$
 +
\alpha _ {1} ( t , \tau )  = 2 ,\  \alpha _ {2} ( t , \tau )  = 0
 +
\  \textrm{ if }  t \in \left [ n \tau , \left ( n +
 +
\frac{1}{2}
 +
\right ) \tau \right ] ,
 +
$$
  
In the case of the schemes (3) and (4) inversion of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129019.png" /> is replaced by inversion of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129020.png" />, i.e. by successive inversion of the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129022.png" />, the structure of which is usually simpler.
+
$$
 +
\alpha _ {1} ( t , \tau )  =  0 ,\  \alpha _ {2} ( t , \tau )  =  2 \ \
 +
\textrm{ if }  t \in \left [ \left ( n +
 +
\frac{1}{2}
 +
\right ) \tau , ( n + 1 ) \tau \right ] .
 +
$$
 +
 
 +
In the case of the schemes (3) and (4) inversion of the operator $  E - \tau \Lambda _ {1} $
 +
is replaced by inversion of the operator $  ( E - \tau \Lambda _ {11} ) ( E - \tau \Lambda _ {12} ) $,  
 +
i.e. by successive inversion of the operators $  E - \tau \Lambda _ {11} $,  
 +
$  E - \tau \Lambda _ {12} $,  
 +
the structure of which is usually simpler.
  
 
Interpretation of (5) permits one to regard the splitting scheme
 
Interpretation of (5) permits one to regard the splitting scheme
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f04129023.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{u  ^ {n+} 1/2 - u  ^ {n} } \tau
 +
  = \Lambda _ {1} u  ^ {n+} 1/2 ,\ 
 +
\frac{u
 +
^ {n+} 1 - u  ^ {n+} 1/2 } \tau
 +
  =  \Lambda _ {2} u  ^ {n+} 1
 +
$$
  
 
as a simple approximation of equation (5) which weakly approximates equation (1).
 
as a simple approximation of equation (5) which weakly approximates equation (1).
Line 55: Line 127:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.N. Yanenko,  "The method of fractional steps: solution of problems of mathematical physics in several variables" , Springer  (1971)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Samarskii,  "Introduction to the theory of finite-difference schemes" , Moscow  (1971)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.N. Yanenko,  "The method of fractional steps: solution of problems of mathematical physics in several variables" , Springer  (1971)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Samarskii,  "Introduction to the theory of finite-difference schemes" , Moscow  (1971)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 19:39, 5 June 2020


A method for constructing economical (with respect to the number of operations) stable difference schemes to solve differential equations of mathematical physics.

As the dimension of the problem increases, the number of operations needed to obtain a numerical solution increases correspondingly, both on account of the larger number of points and owing to the logical difficulties in compiling the computation program. For the system of differential equations

$$ \tag{1 } \frac{\partial u }{\partial t } = L u , $$

where $ L = L ( \partial / \partial x ) $ is a differential operator, $ u = u ( x , t ) $, $ x = ( x _ {1} \dots x _ {n} ) $, the absolutely stable implicit schemes of simple approximation

$$ \tag{2 } \frac{u ^ {n+} 1 - u ^ {n} } \tau = \Lambda _ {1} u ^ {n+} 1 + \Lambda _ {0} u ^ {n} , $$

$$ \Lambda _ {0} \sim L _ {0} ,\ \Lambda _ {1} \sim \ L _ {1} ,\ L _ {0} + L _ {1} = L , $$

become ineffective in the case of multi-dimensional problems. In some cases a very small step in the unit of time is needed, in others finding each $ u ^ {n+} 1 $ requires $ \textrm{ const } \cdot N ^ {\alpha ( m) } $ operations, where $ N $ is the number of points per measurement, $ m $ is the number of spatial measurements and $ \alpha ( m) $ strongly increases as $ m $ increases.

For obtaining economical stable difference schemes methods are proposed based on the following ideas:

1) splitting of the difference schemes;

2) approximate factorization;

3) splitting (weak approximation) of the differential equations.

In the case of equation (1) the respective difference schemes have the following form (for the sake of simplicity, two fractional steps have been taken and the periodic Cauchy problem is considered):

the splitting scheme:

$$ \tag{3 } \left . \begin{array}{c} \frac{u ^ {n+} 1/2 - u ^ {n} } \tau = \Lambda _ {11} u ^ {n+} 1/2 + \Lambda _ {01} u ^ {n} , \\ \frac{u ^ {n+} 1 - u ^ {n+} 1/2 } \tau = \Lambda _ {12} u ^ {n+} 1 + \Lambda _ {02} u ^ {n+} 1/2 ; \end{array} \right \} $$

the approximate factorization scheme:

$$ \tag{4 } ( E - \tau \Lambda _ {11} ) ( E - \tau \Lambda _ {12} ) u ^ {n+} 1 = ( E + t \Omega ) u ^ {n} , $$

$$ \Lambda _ {11} + \Lambda _ {12} = \Lambda _ {1} ,\ \Omega \sim \Lambda _ {0} ; $$

the weak approximation scheme:

$$ \tag{5 } \frac{\partial u }{\partial t } = ( \alpha _ {1} L _ {1} + \alpha _ {2} L _ {1} ) u = L u ,\ L = L _ {0} + L _ {1} , $$

$$ \alpha _ {1} ( t , \tau ) = 2 ,\ \alpha _ {2} ( t , \tau ) = 0 \ \textrm{ if } t \in \left [ n \tau , \left ( n + \frac{1}{2} \right ) \tau \right ] , $$

$$ \alpha _ {1} ( t , \tau ) = 0 ,\ \alpha _ {2} ( t , \tau ) = 2 \ \ \textrm{ if } t \in \left [ \left ( n + \frac{1}{2} \right ) \tau , ( n + 1 ) \tau \right ] . $$

In the case of the schemes (3) and (4) inversion of the operator $ E - \tau \Lambda _ {1} $ is replaced by inversion of the operator $ ( E - \tau \Lambda _ {11} ) ( E - \tau \Lambda _ {12} ) $, i.e. by successive inversion of the operators $ E - \tau \Lambda _ {11} $, $ E - \tau \Lambda _ {12} $, the structure of which is usually simpler.

Interpretation of (5) permits one to regard the splitting scheme

$$ \frac{u ^ {n+} 1/2 - u ^ {n} } \tau = \Lambda _ {1} u ^ {n+} 1/2 ,\ \frac{u ^ {n+} 1 - u ^ {n+} 1/2 } \tau = \Lambda _ {2} u ^ {n+} 1 $$

as a simple approximation of equation (5) which weakly approximates equation (1).

Thus, these are methods based on the representation of complicated operators by simpler ones, and the integration of the initial equation is reduced to the integration of equations of a simpler structure, while the methods of fractional steps must satisfy the approximation and the stability conditions only in the final result (when written in "integral" steps). Many complicated problems in mathematical physics can be solved by the splitting method.

Splitting schemes of a high degree of accuracy have now attained a very advanced stage. One modification of this method is the so-called "particles-in-cells" method: The splitting is carried out according to physical processes and is independent of the reduction in the dimension of the operators.

References

[1] N.N. Yanenko, "The method of fractional steps: solution of problems of mathematical physics in several variables" , Springer (1971) (Translated from Russian)
[2] A.A. Samarskii, "Introduction to the theory of finite-difference schemes" , Moscow (1971) (In Russian)

Comments

Splitting methods like local one-dimensional methods and hopscotch methods are often used in Western literature. Their applicability is somewhat limited, as fairly regular domains (like squares) are needed.

References

[a1] A.R. Gourlay, "Splitting methods for time-dependent partial differential equations" , The state-of-the-art in numerical analysis. Proc. Conf. Univ. York, 1976 , Acad. Press (1977) pp. 757–796
[a2] E.H. Twizell, "Computational methods for partial differential equations" , E. Horwood (1984)
How to Cite This Entry:
Fractional steps, method of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fractional_steps,_method_of&oldid=14759
This article was adapted from an original article by N.N. Yanenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article