Difference between revisions of "Quasi-periodic function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | q0766301.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/Q076/Q.0706630 Quasi\AAhperiodic function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | A function | + | {{TEX|auto}} |
+ | {{TEX|done}} | ||
+ | |||
+ | ''with periods $ \omega _ {1} \dots \omega _ {n} $'' | ||
+ | |||
+ | A function $ f $ | ||
+ | such that $ f ( t) = F ( t \dots t ) $ | ||
+ | for some continuous function $ F ( t _ {1} \dots t _ {n} ) $ | ||
+ | of $ n $ | ||
+ | variables that is periodic with respect to $ t _ {1} \dots t _ {n} $ | ||
+ | with periods $ \omega _ {1} \dots \omega _ {n} $, | ||
+ | respectively. All the $ \omega _ {1} \dots \omega _ {n} $ | ||
+ | are required to be strictly positive and their reciprocals $ p _ {1} \dots p _ {n} $ | ||
+ | have to be rationally linearly independent. If $ f _ {1} $ | ||
+ | and $ f _ {2} $ | ||
+ | are continuous periodic functions with periods $ \omega _ {1} $ | ||
+ | and $ \omega _ {2} $, | ||
+ | respectively, where $ \omega _ {1} / \omega _ {2} $ | ||
+ | is irrational, then $ g = f _ {1} + f _ {2} $ | ||
+ | and $ h = \max \{ f _ {1} , f _ {2} \} $ | ||
+ | are quasi-periodic functions. | ||
The theory of quasi-periodic functions serves as a basis for the creation of the theory of almost-periodic functions (cf. [[Almost-periodic function|Almost-periodic function]]). In the case of continuous functions, quasi-periodic functions are a generalization of periodic functions, but a particular case of almost-periodic functions. | The theory of quasi-periodic functions serves as a basis for the creation of the theory of almost-periodic functions (cf. [[Almost-periodic function|Almost-periodic function]]). In the case of continuous functions, quasi-periodic functions are a generalization of periodic functions, but a particular case of almost-periodic functions. | ||
Line 7: | Line 34: | ||
Quasi-periodic functions have a representation | Quasi-periodic functions have a representation | ||
− | + | $$ | |
+ | f ( t) = \ | ||
+ | \sum c _ {k _ {1} \dots k _ {n} } | ||
+ | e ^ {i ( k _ {1} p _ {1} + \dots + k _ {n} p _ {n} ) t } , | ||
+ | $$ | ||
− | where the | + | where the $ c _ {k _ {1} \dots k _ {n} } = c _ {k} $ |
+ | are such that $ \sum | c _ {k} | ^ {2} < \infty $. | ||
+ | Quasi-periodic functions possess the following properties: addition and multiplication of quasi-periodic functions yield quasi-periodic functions; a sequence of quasi-periodic functions that is uniformly convergent for $ t \in \mathbf R $ | ||
+ | gives in the limit an almost-periodic function; if $ g $ | ||
+ | is an almost-periodic function and $ \epsilon > 0 $, | ||
+ | then there exists a quasi-periodic function $ f $ | ||
+ | such that | ||
− | + | $$ | |
+ | | f ( t) - g ( t) | < \epsilon \ \textrm{ for } t \in \mathbf R . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Bohl, "Über die Darstellung von Funktionen einer Variabeln durch trigonometrische Reihen mit mehreren einer Variabeln proportionalen Argumenten" , Dorpat (1893) (Thesis)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.Kh. Kharasakhal, "Almost-periodic solutions of ordinary differential equations" , Alma-Ata (1970) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Bohl, "Über die Darstellung von Funktionen einer Variabeln durch trigonometrische Reihen mit mehreren einer Variabeln proportionalen Argumenten" , Dorpat (1893) (Thesis)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.Kh. Kharasakhal, "Almost-periodic solutions of ordinary differential equations" , Alma-Ata (1970) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Line 23: | Line 60: | ||
Consider Hill's differential equation | Consider Hill's differential equation | ||
− | + | $$ \tag{a1 } | |
+ | |||
+ | \frac{d ^ {2} u }{dx ^ {2} } | ||
+ | + | ||
+ | F( x) u = 0 | ||
+ | $$ | ||
+ | |||
+ | with periodic $ F $, | ||
+ | $ F( x+ 2 \pi )= F( x) $. | ||
+ | A particular case is Mathieu's differential equation | ||
− | + | $$ \tag{a2 } | |
− | + | \frac{d ^ {2} u }{dx ^ {2} } | |
+ | = ( a- 2q \cos 2z) u = 0 . | ||
+ | $$ | ||
− | A solution of (a1) need not be periodic. However, there is always a particular solution of the form | + | A solution of (a1) need not be periodic. However, there is always a particular solution of the form $ u( x) = e ^ {i \mu x } \phi ( x) $ |
+ | with $ \phi ( x) $ | ||
+ | periodic (Floquet's theorem; cf. [[#References|[a1]]] for a more precise statement). If the characteristic exponent $ \mu $ | ||
+ | is real, $ u( x) $ | ||
+ | is a quasi-periodic function. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.G. Bohl, "Ueber eine Differentialgleichung der Störungstheorie" ''Crelles J.'' , '''131''' (1906) pp. 268–321</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B.M. Levitan, V.V. Zhikov, "Almost periodic functions and differential equations" , Cambridge Univ. Press (1984) pp. 47–48 (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W. Magnus, S. Winkler, "Hill's equation" , Dover, reprint (1979) pp. 4ff</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.G. Bohl, "Ueber eine Differentialgleichung der Störungstheorie" ''Crelles J.'' , '''131''' (1906) pp. 268–321</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B.M. Levitan, V.V. Zhikov, "Almost periodic functions and differential equations" , Cambridge Univ. Press (1984) pp. 47–48 (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W. Magnus, S. Winkler, "Hill's equation" , Dover, reprint (1979) pp. 4ff</TD></TR></table> |
Latest revision as of 08:09, 6 June 2020
with periods $ \omega _ {1} \dots \omega _ {n} $
A function $ f $ such that $ f ( t) = F ( t \dots t ) $ for some continuous function $ F ( t _ {1} \dots t _ {n} ) $ of $ n $ variables that is periodic with respect to $ t _ {1} \dots t _ {n} $ with periods $ \omega _ {1} \dots \omega _ {n} $, respectively. All the $ \omega _ {1} \dots \omega _ {n} $ are required to be strictly positive and their reciprocals $ p _ {1} \dots p _ {n} $ have to be rationally linearly independent. If $ f _ {1} $ and $ f _ {2} $ are continuous periodic functions with periods $ \omega _ {1} $ and $ \omega _ {2} $, respectively, where $ \omega _ {1} / \omega _ {2} $ is irrational, then $ g = f _ {1} + f _ {2} $ and $ h = \max \{ f _ {1} , f _ {2} \} $ are quasi-periodic functions.
The theory of quasi-periodic functions serves as a basis for the creation of the theory of almost-periodic functions (cf. Almost-periodic function). In the case of continuous functions, quasi-periodic functions are a generalization of periodic functions, but a particular case of almost-periodic functions.
Quasi-periodic functions have a representation
$$ f ( t) = \ \sum c _ {k _ {1} \dots k _ {n} } e ^ {i ( k _ {1} p _ {1} + \dots + k _ {n} p _ {n} ) t } , $$
where the $ c _ {k _ {1} \dots k _ {n} } = c _ {k} $ are such that $ \sum | c _ {k} | ^ {2} < \infty $. Quasi-periodic functions possess the following properties: addition and multiplication of quasi-periodic functions yield quasi-periodic functions; a sequence of quasi-periodic functions that is uniformly convergent for $ t \in \mathbf R $ gives in the limit an almost-periodic function; if $ g $ is an almost-periodic function and $ \epsilon > 0 $, then there exists a quasi-periodic function $ f $ such that
$$ | f ( t) - g ( t) | < \epsilon \ \textrm{ for } t \in \mathbf R . $$
References
[1] | P. Bohl, "Über die Darstellung von Funktionen einer Variabeln durch trigonometrische Reihen mit mehreren einer Variabeln proportionalen Argumenten" , Dorpat (1893) (Thesis) |
[2] | V.Kh. Kharasakhal, "Almost-periodic solutions of ordinary differential equations" , Alma-Ata (1970) (In Russian) |
Comments
Quasi-periodic functions of time occur naturally in Hamiltonian mechanics to describe multi-periodic motions of integrable systems (see [a1] and Quasi-periodic motion).
Consider Hill's differential equation
$$ \tag{a1 } \frac{d ^ {2} u }{dx ^ {2} } + F( x) u = 0 $$
with periodic $ F $, $ F( x+ 2 \pi )= F( x) $. A particular case is Mathieu's differential equation
$$ \tag{a2 } \frac{d ^ {2} u }{dx ^ {2} } = ( a- 2q \cos 2z) u = 0 . $$
A solution of (a1) need not be periodic. However, there is always a particular solution of the form $ u( x) = e ^ {i \mu x } \phi ( x) $ with $ \phi ( x) $ periodic (Floquet's theorem; cf. [a1] for a more precise statement). If the characteristic exponent $ \mu $ is real, $ u( x) $ is a quasi-periodic function.
References
[a1] | V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian) |
[a2] | P.G. Bohl, "Ueber eine Differentialgleichung der Störungstheorie" Crelles J. , 131 (1906) pp. 268–321 |
[a3] | B.M. Levitan, V.V. Zhikov, "Almost periodic functions and differential equations" , Cambridge Univ. Press (1984) pp. 47–48 (Translated from Russian) |
[a4] | W. Magnus, S. Winkler, "Hill's equation" , Dover, reprint (1979) pp. 4ff |
Quasi-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-periodic_function&oldid=14617