Namespaces
Variants
Actions

Difference between revisions of "Power function of a test"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A function characterizing the quality of a [[Statistical test|statistical test]]. Suppose that, based on a realization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p0742101.png" /> of a random vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p0742102.png" /> with values in a sampling space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p0742103.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p0742104.png" />, it is necessary to test the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p0742105.png" /> according to which the probability distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p0742106.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p0742107.png" /> belongs to a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p0742108.png" />, against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p0742109.png" /> according to which
+
<!--
 +
p0742101.png
 +
$#A+1 = 31 n = 0
 +
$#C+1 = 31 : ~/encyclopedia/old_files/data/P074/P.0704210 Power function of a test
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421010.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421011.png" /> be the critical function of the statistical test intended for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421012.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421013.png" />. Then
+
A function characterizing the quality of a [[Statistical test|statistical test]]. Suppose that, based on a realization 
 +
of a random vector    X
 +
with values in a sampling space    ( X , B , {\mathsf P} _  \theta  ) ,
 +
  \theta \in \Theta ,
 +
it is necessary to test the hypothesis    H _ {0}
 +
according to which the probability distribution    {\mathsf P} _  \theta 
 +
of    X
 +
belongs to a subset  $  H _ {0} = \{ { {\mathsf P} _  \theta  } : {\theta \in \Theta _ {0} \subset  \Theta } \} $,
 +
against the alternative    H _ {1}
 +
according to which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$
 +
{\mathsf P} _  \theta  \in  H _ {1}  = \
 +
\{ { {\mathsf P} _  \theta  } : {\theta \in \Theta _ {1} = \Theta \setminus
 +
\Theta _ {0} } \}
 +
,
 +
$$
  
is called the power function of the statistical test with critical function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421015.png" />. It follows from (*) that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421016.png" /> gives the probabilities with which the statistical test for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421017.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421018.png" /> rejects the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421019.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421020.png" /> is subject to the law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421022.png" />.
+
and let    \phi ( \cdot )
 +
be the critical function of the statistical test intended for testing $  H _ {0} $
 +
against   H _ {1} .  
 +
Then
  
In the theory of statistical hypothesis testing, founded by J. Neyman and E. Pearson, the problem of testing a compound hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421023.png" /> against a compound alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421024.png" /> is formulated in terms of the power function of a test and consists of the construction of a test maximizing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421025.png" />, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421026.png" />, under the condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421027.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421028.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421029.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421030.png" />) is called the significance level of the test — a given admissible probability of the error of rejecting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074210/p07421031.png" /> when it is in fact true.
+
$$ \tag{* }
 +
\beta ( \theta )  = \
 +
\int\limits _ { \mathfrak X } \phi ( x)  d {\mathsf P} _  \theta  ( x) ,\ \
 +
\theta \in \Theta = \Theta _ {0} \cup \Theta _ {1} ,
 +
$$
 +
 
 +
is called the power function of the statistical test with critical function    \phi .
 +
It follows from (*) that    \beta ( \theta )
 +
gives the probabilities with which the statistical test for testing    H _ {0}
 +
against    H _ {1}
 +
rejects the hypothesis    H _ {0}
 +
if    X
 +
is subject to the law    {\mathsf P} _  \theta  ,
 +
  \theta \in \Theta .
 +
 
 +
In the theory of statistical hypothesis testing, founded by J. Neyman and E. Pearson, the problem of testing a compound hypothesis $  H _ {0} $
 +
against a compound alternative   H _ {1}
 +
is formulated in terms of the power function of a test and consists of the construction of a test maximizing   \beta ( \theta ) ,  
 +
when   \theta \in \Theta ,  
 +
under the condition that   \beta ( \theta ) \leq  \alpha
 +
for all $  \theta \in \Theta _ {0} $,  
 +
where   \alpha (
 +
$  0 < \alpha < 1 $)  
 +
is called the significance level of the test — a given admissible probability of the error of rejecting $  H _ {0} $
 +
when it is in fact true.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Cramér,  "Mathematical methods of statistics" , Princeton Univ. Press  (1946)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.L. van der Waerden,  "Mathematische Statistik" , Springer  (1957)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Cramér,  "Mathematical methods of statistics" , Princeton Univ. Press  (1946)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.L. van der Waerden,  "Mathematische Statistik" , Springer  (1957)</TD></TR></table>

Latest revision as of 08:07, 6 June 2020


A function characterizing the quality of a statistical test. Suppose that, based on a realization x of a random vector X with values in a sampling space ( X , B , {\mathsf P} _ \theta ) , \theta \in \Theta , it is necessary to test the hypothesis H _ {0} according to which the probability distribution {\mathsf P} _ \theta of X belongs to a subset H _ {0} = \{ { {\mathsf P} _ \theta } : {\theta \in \Theta _ {0} \subset \Theta } \} , against the alternative H _ {1} according to which

{\mathsf P} _ \theta \in H _ {1} = \ \{ { {\mathsf P} _ \theta } : {\theta \in \Theta _ {1} = \Theta \setminus \Theta _ {0} } \} ,

and let \phi ( \cdot ) be the critical function of the statistical test intended for testing H _ {0} against H _ {1} . Then

\tag{* } \beta ( \theta ) = \ \int\limits _ { \mathfrak X } \phi ( x) d {\mathsf P} _ \theta ( x) ,\ \ \theta \in \Theta = \Theta _ {0} \cup \Theta _ {1} ,

is called the power function of the statistical test with critical function \phi . It follows from (*) that \beta ( \theta ) gives the probabilities with which the statistical test for testing H _ {0} against H _ {1} rejects the hypothesis H _ {0} if X is subject to the law {\mathsf P} _ \theta , \theta \in \Theta .

In the theory of statistical hypothesis testing, founded by J. Neyman and E. Pearson, the problem of testing a compound hypothesis H _ {0} against a compound alternative H _ {1} is formulated in terms of the power function of a test and consists of the construction of a test maximizing \beta ( \theta ) , when \theta \in \Theta , under the condition that \beta ( \theta ) \leq \alpha for all \theta \in \Theta _ {0} , where \alpha ( 0 < \alpha < 1 ) is called the significance level of the test — a given admissible probability of the error of rejecting H _ {0} when it is in fact true.

References

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1959)
[2] H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)
[3] B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)
How to Cite This Entry:
Power function of a test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Power_function_of_a_test&oldid=14564
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article