|
|
Line 1: |
Line 1: |
− | A mapping of the set of all sets of natural numbers into itself (i.e. a mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358101.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358102.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358103.png" /> is the set of natural numbers), defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358104.png" /> be a recursively-enumerable set having Gödel number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358105.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358106.png" /> be a finite set of natural numbers with canonical index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358107.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358108.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581010.png" />) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581011.png" /> be the number of the ordered pair consisting of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581013.png" /> for a certain specified one-to-one recursive encoding of the pairs. Each recursively-enumerable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581014.png" /> yields a procedure that transforms any given set of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581015.png" /> into the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581016.png" /> of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581017.png" /> with the property that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581018.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581019.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581020.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581021.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581022.png" /> and if the finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581023.png" /> is contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581024.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581025.png" /> is related to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581026.png" />. In other words,
| + | <!-- |
| + | e0358101.png |
| + | $#A+1 = 49 n = 0 |
| + | $#C+1 = 49 : ~/encyclopedia/old_files/data/E035/E.0305810 Enumeration operator |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581027.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | This procedure enables one to obtain effectively from any enumeration on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581028.png" /> an enumeration on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581029.png" />. It is called an enumeration operator and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581030.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581031.png" /> for some enumeration operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581032.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581033.png" /> is reducible in enumerability to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581034.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581035.png" />).
| + | A mapping of the set of all sets of natural numbers into itself (i.e. a mapping of $ 2 ^ {\mathbf N} $ |
| + | into $ 2 ^ {\mathbf N} $, |
| + | where $ \mathbf N $ |
| + | is the set of natural numbers), defined as follows. Let $ W _ {z} $ |
| + | be a recursively-enumerable set having Gödel number $ z $, |
| + | let $ D _ {u} $ |
| + | be a finite set of natural numbers with canonical index $ u $( |
| + | i.e. $ D _ {u} = \{ x _ {1} \dots x _ {n} \} $, |
| + | where $ x _ {1} < \dots < x _ {n} $ |
| + | and $ 2 ^ {x _ {1} } + \dots + 2 ^ {x _ {n} } = u $) |
| + | and let $ \langle x, u \rangle $ |
| + | be the number of the ordered pair consisting of the numbers $ x $ |
| + | and $ u $ |
| + | for a certain specified one-to-one recursive encoding of the pairs. Each recursively-enumerable set $ W _ {z} $ |
| + | yields a procedure that transforms any given set of natural numbers $ B $ |
| + | into the set $ A $ |
| + | of natural numbers $ x $ |
| + | with the property that $ \langle x , u \rangle \in W _ {z} $ |
| + | for some $ u $ |
| + | with $ D _ {u} \subset B $, |
| + | i.e. $ \langle x, u\rangle $ |
| + | belongs to $ W _ {z} $ |
| + | and if the finite set $ D _ {u} $ |
| + | is contained in $ B $, |
| + | then $ x $ |
| + | is related to $ A $. |
| + | In other words, |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581037.png" /> are enumeration operators, their composite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581038.png" /> is also an enumeration operator. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581039.png" /> is an enumeration operator and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581040.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581041.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581042.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581043.png" /> for some finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581044.png" />. Each enumeration operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581045.png" /> has a least fixed point, i.e. there exists a recursively-enumerable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581046.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581047.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581048.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581049.png" />.
| + | $$ |
| + | A = \{ {x } : {( \exists u)(\langle x, u\rangle \in W _ {z} \wedge D _ {u} \subseteq B) } \} |
| + | . |
| + | $$ |
| + | |
| + | This procedure enables one to obtain effectively from any enumeration on $ B $ |
| + | an enumeration on $ A $. |
| + | It is called an enumeration operator and is denoted by $ \Phi _ {z} $. |
| + | If $ \Psi ( B) = A $ |
| + | for some enumeration operator $ \Psi $, |
| + | one says that $ A $ |
| + | is reducible in enumerability to $ B $( |
| + | $ A \leq _ {e} B $). |
| + | |
| + | If $ \Phi $ |
| + | and $ \Psi $ |
| + | are enumeration operators, their composite $ \Phi \Psi $ |
| + | is also an enumeration operator. If $ \Psi $ |
| + | is an enumeration operator and $ B _ {1} \subseteq B $, |
| + | then $ \Psi ( B _ {1} ) \subseteq \Psi ( B) $. |
| + | If $ x \in \Psi ( B _ {1} ) $, |
| + | then $ x \in \Psi ( D) $ |
| + | for some finite set $ D \subseteq B _ {1} $. |
| + | Each enumeration operator $ \Psi $ |
| + | has a least fixed point, i.e. there exists a recursively-enumerable set $ A $ |
| + | such that $ \Psi ( A) = A $, |
| + | and if $ \Psi ( B) = B $, |
| + | then $ A \subseteq B $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967)</TD></TR></table> |
A mapping of the set of all sets of natural numbers into itself (i.e. a mapping of $ 2 ^ {\mathbf N} $
into $ 2 ^ {\mathbf N} $,
where $ \mathbf N $
is the set of natural numbers), defined as follows. Let $ W _ {z} $
be a recursively-enumerable set having Gödel number $ z $,
let $ D _ {u} $
be a finite set of natural numbers with canonical index $ u $(
i.e. $ D _ {u} = \{ x _ {1} \dots x _ {n} \} $,
where $ x _ {1} < \dots < x _ {n} $
and $ 2 ^ {x _ {1} } + \dots + 2 ^ {x _ {n} } = u $)
and let $ \langle x, u \rangle $
be the number of the ordered pair consisting of the numbers $ x $
and $ u $
for a certain specified one-to-one recursive encoding of the pairs. Each recursively-enumerable set $ W _ {z} $
yields a procedure that transforms any given set of natural numbers $ B $
into the set $ A $
of natural numbers $ x $
with the property that $ \langle x , u \rangle \in W _ {z} $
for some $ u $
with $ D _ {u} \subset B $,
i.e. $ \langle x, u\rangle $
belongs to $ W _ {z} $
and if the finite set $ D _ {u} $
is contained in $ B $,
then $ x $
is related to $ A $.
In other words,
$$
A = \{ {x } : {( \exists u)(\langle x, u\rangle \in W _ {z} \wedge D _ {u} \subseteq B) } \}
.
$$
This procedure enables one to obtain effectively from any enumeration on $ B $
an enumeration on $ A $.
It is called an enumeration operator and is denoted by $ \Phi _ {z} $.
If $ \Psi ( B) = A $
for some enumeration operator $ \Psi $,
one says that $ A $
is reducible in enumerability to $ B $(
$ A \leq _ {e} B $).
If $ \Phi $
and $ \Psi $
are enumeration operators, their composite $ \Phi \Psi $
is also an enumeration operator. If $ \Psi $
is an enumeration operator and $ B _ {1} \subseteq B $,
then $ \Psi ( B _ {1} ) \subseteq \Psi ( B) $.
If $ x \in \Psi ( B _ {1} ) $,
then $ x \in \Psi ( D) $
for some finite set $ D \subseteq B _ {1} $.
Each enumeration operator $ \Psi $
has a least fixed point, i.e. there exists a recursively-enumerable set $ A $
such that $ \Psi ( A) = A $,
and if $ \Psi ( B) = B $,
then $ A \subseteq B $.
References
[1] | H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967) |