|
|
Line 1: |
Line 1: |
− | A [[Relation|relation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803201.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803202.png" /> is the set of natural numbers, such that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803203.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803204.png" /> by the condition
| + | <!-- |
| + | r0803201.png |
| + | $#A+1 = 19 n = 0 |
| + | $#C+1 = 19 : ~/encyclopedia/old_files/data/R080/R.0800320 Recursive relation |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803205.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | is a [[Recursive function|recursive function]]. In particular, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803206.png" />, the universal relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803207.png" /> and the zero relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803208.png" /> are recursive relations. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803209.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032010.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032011.png" />-place recursive relations, then the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032015.png" /> will also be recursive relations. With regard to the operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032018.png" />, the system of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032019.png" />-place recursive relations thus forms a [[Boolean algebra|Boolean algebra]]. | + | A [[Relation|relation]] $ R \subseteq \mathbf N ^ {n} $, |
| + | where $ \mathbf N $ |
| + | is the set of natural numbers, such that the function $ f $ |
| + | defined on $ \mathbf N ^ {n} $ |
| + | by the condition |
| + | |
| + | $$ |
| + | f( x _ {1} \dots x _ {n} ) = \left \{ |
| + | |
| + | is a [[Recursive function|recursive function]]. In particular, for any $ n $, |
| + | the universal relation $ \mathbf N ^ {n} $ |
| + | and the zero relation $ \emptyset $ |
| + | are recursive relations. If $ R $ |
| + | and $ S $ |
| + | are $ n $- |
| + | place recursive relations, then the relations $ R \cup S $, |
| + | $ R \cap S $, |
| + | $ R ^ {c} = \mathbf N ^ {n} \setminus R $, |
| + | $ R\setminus S $ |
| + | will also be recursive relations. With regard to the operations $ \cup $, |
| + | $ \cap $, |
| + | $ {} ^ {c} $, |
| + | the system of all $ n $- |
| + | place recursive relations thus forms a [[Boolean algebra|Boolean algebra]]. |
Revision as of 08:10, 6 June 2020
A relation $ R \subseteq \mathbf N ^ {n} $,
where $ \mathbf N $
is the set of natural numbers, such that the function $ f $
defined on $ \mathbf N ^ {n} $
by the condition
$$
f( x _ {1} \dots x _ {n} ) = \left \{
is a recursive function. In particular, for any $ n $,
the universal relation $ \mathbf N ^ {n} $
and the zero relation $ \emptyset $
are recursive relations. If $ R $
and $ S $
are $ n $-
place recursive relations, then the relations $ R \cup S $,
$ R \cap S $,
$ R ^ {c} = \mathbf N ^ {n} \setminus R $,
$ R\setminus S $
will also be recursive relations. With regard to the operations $ \cup $,
$ \cap $,
$ {} ^ {c} $,
the system of all $ n $-
place recursive relations thus forms a Boolean algebra.
How to Cite This Entry:
Recursive relation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Recursive_relation&oldid=14461
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article