Namespaces
Variants
Actions

Difference between revisions of "Dispersion ellipsoid"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
An ellipsoid in the realization space of a random vector describing the concentration of its probability distribution around a certain prescribed vector in terms of the second-order moments. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d0333501.png" /> be a random vector assuming values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d0333502.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d0333503.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d0333504.png" /> and having non-singular covariance matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d0333505.png" />. Then, for any fixed vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d0333506.png" /> in the realization space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d0333507.png" />, one can define an ellipsoid
+
<!--
 +
d0333501.png
 +
$#A+1 = 23 n = 0
 +
$#C+1 = 23 : ~/encyclopedia/old_files/data/D033/D.0303350 Dispersion ellipsoid
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d0333508.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
called a dispersion ellipsoid of the probability distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d0333509.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335010.png" />, or a dispersion ellipsoid of the random vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335011.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335012.png" />, then the dispersion ellipsoid is a geometric characteristic of the concentration of the probability distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335013.png" /> around its mathematical expectation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335014.png" />.
+
An ellipsoid in the realization space of a random vector describing the concentration of its probability distribution around a certain prescribed vector in terms of the second-order moments. Let  $  X $
 +
be a random vector assuming values  $  x = ( x _ {1} \dots x _ {n} )  ^ {T} $
 +
in the  $  n $-
 +
dimensional Euclidean space  $  \mathbf R  ^ {n} $
 +
and having non-singular covariance matrix  $  B $.  
 +
Then, for any fixed vector  $  a $
 +
in the realization space  $  \mathbf R  ^ {n} $,  
 +
one can define an ellipsoid
  
In the problem of the statistical estimation of an unknown <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335015.png" />-dimensional parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335016.png" />, the concept of a dispersion ellipsoid can be used to define a partial order on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335017.png" /> of all unbiased estimators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335018.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335019.png" /> having non-singular covariance matrices, in the following way: Given two estimators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335020.png" />, the preferred one is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335021.png" /> if the dispersion ellipsoid of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335022.png" /> lies wholly inside that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033350/d03335023.png" />. These unbiased efficient estimators of an unknown vector parameter are optimal in the sense that the dispersion ellipsoid of such an unbiased efficient estimator lies inside that of any other unbiased estimator. See [[Rao–Cramér inequality|Rao–Cramér inequality]]; [[Efficient estimator|Efficient estimator]]; [[Information, amount of|Information, amount of]].
+
$$
 +
( x - a)  ^ {T} B  ^ {-} 1 ( x - a)  =  n + 2,\ \
 +
x \in \mathbf R  ^ {n} ,
 +
$$
 +
 
 +
called a dispersion ellipsoid of the probability distribution of  $  X $
 +
with respect to  $  a $,
 +
or a dispersion ellipsoid of the random vector  $  X $.
 +
In particular, if  $  a = {\mathsf E} X $,
 +
then the dispersion ellipsoid is a geometric characteristic of the concentration of the probability distribution of  $  X $
 +
around its mathematical expectation  $  {\mathsf E} X $.
 +
 
 +
In the problem of the statistical estimation of an unknown $  n $-
 +
dimensional parameter $  \theta $,  
 +
the concept of a dispersion ellipsoid can be used to define a partial order on the set $  \tau = \{ T \} $
 +
of all unbiased estimators $  T $
 +
of $  \theta $
 +
having non-singular covariance matrices, in the following way: Given two estimators $  T _ {1} , T _ {2} \in \tau $,  
 +
the preferred one is $  T _ {1} $
 +
if the dispersion ellipsoid of $  T _ {1} $
 +
lies wholly inside that of $  T _ {2} $.  
 +
These unbiased efficient estimators of an unknown vector parameter are optimal in the sense that the dispersion ellipsoid of such an unbiased efficient estimator lies inside that of any other unbiased estimator. See [[Rao–Cramér inequality|Rao–Cramér inequality]]; [[Efficient estimator|Efficient estimator]]; [[Information, amount of|Information, amount of]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cramér,  M.R. Leadbetter,  "Stationary and related stochastic processes" , Wiley  (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  T.W. Anderson,  "An introduction to multivariate statistical analysis" , Wiley  (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.S. Ibragimov,  "Statistical estimation: asymptotic theory" , Springer  (1981)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cramér,  M.R. Leadbetter,  "Stationary and related stochastic processes" , Wiley  (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  T.W. Anderson,  "An introduction to multivariate statistical analysis" , Wiley  (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.S. Ibragimov,  "Statistical estimation: asymptotic theory" , Springer  (1981)  (Translated from Russian)</TD></TR></table>

Revision as of 19:36, 5 June 2020


An ellipsoid in the realization space of a random vector describing the concentration of its probability distribution around a certain prescribed vector in terms of the second-order moments. Let $ X $ be a random vector assuming values $ x = ( x _ {1} \dots x _ {n} ) ^ {T} $ in the $ n $- dimensional Euclidean space $ \mathbf R ^ {n} $ and having non-singular covariance matrix $ B $. Then, for any fixed vector $ a $ in the realization space $ \mathbf R ^ {n} $, one can define an ellipsoid

$$ ( x - a) ^ {T} B ^ {-} 1 ( x - a) = n + 2,\ \ x \in \mathbf R ^ {n} , $$

called a dispersion ellipsoid of the probability distribution of $ X $ with respect to $ a $, or a dispersion ellipsoid of the random vector $ X $. In particular, if $ a = {\mathsf E} X $, then the dispersion ellipsoid is a geometric characteristic of the concentration of the probability distribution of $ X $ around its mathematical expectation $ {\mathsf E} X $.

In the problem of the statistical estimation of an unknown $ n $- dimensional parameter $ \theta $, the concept of a dispersion ellipsoid can be used to define a partial order on the set $ \tau = \{ T \} $ of all unbiased estimators $ T $ of $ \theta $ having non-singular covariance matrices, in the following way: Given two estimators $ T _ {1} , T _ {2} \in \tau $, the preferred one is $ T _ {1} $ if the dispersion ellipsoid of $ T _ {1} $ lies wholly inside that of $ T _ {2} $. These unbiased efficient estimators of an unknown vector parameter are optimal in the sense that the dispersion ellipsoid of such an unbiased efficient estimator lies inside that of any other unbiased estimator. See Rao–Cramér inequality; Efficient estimator; Information, amount of.

References

[1] H. Cramér, M.R. Leadbetter, "Stationary and related stochastic processes" , Wiley (1967)
[2] T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1958)
[3] I.S. Ibragimov, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian)
How to Cite This Entry:
Dispersion ellipsoid. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dispersion_ellipsoid&oldid=13969
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article