Difference between revisions of "Connection form"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0251501.png | ||
+ | $#A+1 = 67 n = 0 | ||
+ | $#C+1 = 67 : ~/encyclopedia/old_files/data/C025/C.0205150 Connection form | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A linear differential form $ \theta $ | |
+ | on a principal fibre bundle $ P $ | ||
+ | that takes values in the Lie algebra $ \mathfrak g $ | ||
+ | of the structure group $ G $ | ||
+ | of $ P $. | ||
+ | It is defined by a certain [[Linear connection|linear connection]] $ \Gamma $ | ||
+ | on $ P $, | ||
+ | and it determines this connection uniquely. The values of the connection form $ \theta _ {y} ( Y) $ | ||
+ | in terms of $ \Gamma $, | ||
+ | where $ y \in P $ | ||
+ | and $ Y \in T _ {y} ( P) $, | ||
+ | are defined as the elements of $ \mathfrak g $ | ||
+ | which, under the action of $ G $ | ||
+ | on $ P $, | ||
+ | generate the second component of $ Y $ | ||
+ | relative to the direct sum $ T _ {y} ( F) = \Delta _ {y} \oplus T _ {y} ( G _ {y} ) $. | ||
+ | Here $ G _ {y} $ | ||
+ | is the fibre of $ P $ | ||
+ | that contains $ y $ | ||
+ | and $ \Delta $ | ||
+ | is the horizontal distribution of $ \Gamma $. | ||
+ | The horizontal distribution $ \Delta $, | ||
+ | and so the connection $ \Gamma $, | ||
+ | can be recovered from the connection form $ \theta $ | ||
+ | in the following way. | ||
− | + | The Cartan–Laptev theorem. For a form $ \theta $ | |
+ | on $ P $ | ||
+ | with values in $ \mathfrak g $ | ||
+ | to be a connection form it is necessary and sufficient that: 1) $ \theta _ {y} ( Y) $, | ||
+ | for $ Y \in T _ {y} ( G _ {y} ) $, | ||
+ | is the element of $ \mathfrak g $ | ||
+ | that generates $ Y $ | ||
+ | under the action of $ G $ | ||
+ | on $ P $; | ||
+ | and 2) the $ \mathfrak g $- | ||
+ | valued $ 2 $- | ||
+ | form | ||
− | + | $$ | |
+ | \Omega = d \theta + | ||
− | + | \frac{1}{2} | |
+ | [ \theta , \theta ] , | ||
+ | $$ | ||
− | + | formed from $ \theta $, | |
+ | is semi-basic, or horizontal, that is, $ \Omega _ {y} ( Y , Y _ {1} ) = 0 $ | ||
+ | if at least one of the vectors $ Y , Y _ {1} $ | ||
+ | belongs to $ T _ {y} ( G _ {y} ) $. | ||
+ | The $ 2 $- | ||
+ | form $ \Omega $ | ||
+ | is called the [[Curvature form|curvature form]] of the connection. If a basis $ \{ e _ {1} \dots e _ {r} \} $ | ||
+ | is defined in $ \mathfrak g $, | ||
+ | then condition 2) can locally be expressed by the equalities: | ||
− | + | $$ | |
+ | d \theta ^ \rho + | ||
− | + | \frac{1}{2} | |
+ | C _ {\sigma \tau } ^ \rho | ||
+ | \theta ^ \sigma \wedge | ||
+ | \theta ^ \tau = \ | ||
+ | |||
+ | \frac{1}{2} | ||
+ | R _ {ij} ^ \rho | ||
+ | \omega ^ {i} \wedge \omega ^ {j} , | ||
+ | $$ | ||
+ | |||
+ | where $ \omega ^ {1} \dots \omega ^ {n} $ | ||
+ | are certain linearly independent semi-basic $ 1 $- | ||
+ | forms. The necessity of condition 2) was established in this form by E. Cartan [[#References|[1]]]; its sufficiency under the additional assumption of 1) was proved by G.F. Laptev [[#References|[2]]]. The equations | ||
+ | |||
+ | for the components of the connection form are called the structure equations for the connection in $ P $, | ||
+ | the $ R _ {ij} ^ \rho $ | ||
+ | define the curvature object. | ||
+ | |||
+ | As an example, let $ P $ | ||
+ | be the space of affine frames in the tangent bundle of an $ n $- | ||
+ | dimensional smooth manifold $ M $. | ||
+ | Then $ G $ | ||
+ | and $ \mathfrak g $ | ||
+ | are, respectively, the group and the Lie algebra of matrices of the form | ||
+ | |||
+ | $$ | ||
+ | \left \| | ||
+ | \begin{array}{cc} | ||
+ | 1 &a ^ {i} \\ | ||
+ | 0 &A _ {j} ^ {i} \\ | ||
+ | \end{array} | ||
+ | \right \| ,\ \ | ||
+ | \mathop{\rm det} | A _ {j} ^ {i} | | ||
+ | \neq 0 , | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | \left \| | ||
+ | \begin{array}{cc} | ||
+ | 0 &\mathfrak g ^ {i} \\ | ||
+ | 0 &\mathfrak g _ {j} ^ {i} \\ | ||
+ | \end{array} | ||
+ | \right \| \ \ | ||
+ | ( i , j = 1 \dots n ) . | ||
+ | $$ | ||
+ | |||
+ | By the Cartan–Laptev theorem, the $ \mathfrak g $- | ||
+ | valued $ 1 $- | ||
+ | form | ||
− | + | $$ | |
+ | \theta = \ | ||
+ | \left \| | ||
+ | \begin{array}{cc} | ||
+ | 0 &\omega ^ {i} \\ | ||
+ | 0 &\omega _ {j} ^ {i} \\ | ||
+ | \end{array} | ||
+ | \right \| | ||
+ | $$ | ||
− | + | on $ P $ | |
+ | is the connection form of a certain [[Affine connection|affine connection]] on $ M $ | ||
+ | if and only if | ||
− | + | $$ | |
+ | d \omega ^ {i} + | ||
+ | \omega _ {j} ^ {i} \wedge | ||
+ | \omega ^ {j} = \ | ||
− | + | \frac{1}{2} | |
+ | T _ {jk} ^ { i } | ||
+ | \omega ^ {j} \wedge \omega ^ {k} , | ||
+ | $$ | ||
− | + | $$ | |
+ | d \omega _ {j} ^ {i} = \omega _ {k} ^ {i} \wedge \omega _ {j} ^ {k} = | ||
+ | \frac{1}{2} | ||
+ | R _ {jkl} ^ {i} \omega ^ {k} \wedge \omega ^ {l} . | ||
+ | $$ | ||
− | Here | + | Here $ T _ {jk} ^ { i } $ |
+ | and $ R _ {jkl} ^ {i} $ | ||
+ | form, respectively, the torsion and curvature tensors of the affine connection on $ M $. | ||
+ | The last two equations for the components of the connection form are called the structure equations for the affine connection on $ M $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Cartan, "Espaces à connexion affine, projective et conforme" ''Acta Math.'' , '''48''' (1926) pp. 1–42</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.F. Laptev, "Differential geometry of imbedded manifolds. Group-theoretical method of differential-geometric investigations" ''Trudy Moskov. Mat. Obshch.'' , '''2''' (1953) pp. 275–382 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''2''' , Interscience (1969)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Cartan, "Espaces à connexion affine, projective et conforme" ''Acta Math.'' , '''48''' (1926) pp. 1–42</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.F. Laptev, "Differential geometry of imbedded manifolds. Group-theoretical method of differential-geometric investigations" ''Trudy Moskov. Mat. Obshch.'' , '''2''' (1953) pp. 275–382 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''2''' , Interscience (1969)</TD></TR></table> |
Revision as of 17:46, 4 June 2020
A linear differential form $ \theta $
on a principal fibre bundle $ P $
that takes values in the Lie algebra $ \mathfrak g $
of the structure group $ G $
of $ P $.
It is defined by a certain linear connection $ \Gamma $
on $ P $,
and it determines this connection uniquely. The values of the connection form $ \theta _ {y} ( Y) $
in terms of $ \Gamma $,
where $ y \in P $
and $ Y \in T _ {y} ( P) $,
are defined as the elements of $ \mathfrak g $
which, under the action of $ G $
on $ P $,
generate the second component of $ Y $
relative to the direct sum $ T _ {y} ( F) = \Delta _ {y} \oplus T _ {y} ( G _ {y} ) $.
Here $ G _ {y} $
is the fibre of $ P $
that contains $ y $
and $ \Delta $
is the horizontal distribution of $ \Gamma $.
The horizontal distribution $ \Delta $,
and so the connection $ \Gamma $,
can be recovered from the connection form $ \theta $
in the following way.
The Cartan–Laptev theorem. For a form $ \theta $ on $ P $ with values in $ \mathfrak g $ to be a connection form it is necessary and sufficient that: 1) $ \theta _ {y} ( Y) $, for $ Y \in T _ {y} ( G _ {y} ) $, is the element of $ \mathfrak g $ that generates $ Y $ under the action of $ G $ on $ P $; and 2) the $ \mathfrak g $- valued $ 2 $- form
$$ \Omega = d \theta + \frac{1}{2} [ \theta , \theta ] , $$
formed from $ \theta $, is semi-basic, or horizontal, that is, $ \Omega _ {y} ( Y , Y _ {1} ) = 0 $ if at least one of the vectors $ Y , Y _ {1} $ belongs to $ T _ {y} ( G _ {y} ) $. The $ 2 $- form $ \Omega $ is called the curvature form of the connection. If a basis $ \{ e _ {1} \dots e _ {r} \} $ is defined in $ \mathfrak g $, then condition 2) can locally be expressed by the equalities:
$$ d \theta ^ \rho + \frac{1}{2} C _ {\sigma \tau } ^ \rho \theta ^ \sigma \wedge \theta ^ \tau = \ \frac{1}{2} R _ {ij} ^ \rho \omega ^ {i} \wedge \omega ^ {j} , $$
where $ \omega ^ {1} \dots \omega ^ {n} $ are certain linearly independent semi-basic $ 1 $- forms. The necessity of condition 2) was established in this form by E. Cartan [1]; its sufficiency under the additional assumption of 1) was proved by G.F. Laptev [2]. The equations
for the components of the connection form are called the structure equations for the connection in $ P $, the $ R _ {ij} ^ \rho $ define the curvature object.
As an example, let $ P $ be the space of affine frames in the tangent bundle of an $ n $- dimensional smooth manifold $ M $. Then $ G $ and $ \mathfrak g $ are, respectively, the group and the Lie algebra of matrices of the form
$$ \left \| \begin{array}{cc} 1 &a ^ {i} \\ 0 &A _ {j} ^ {i} \\ \end{array} \right \| ,\ \ \mathop{\rm det} | A _ {j} ^ {i} | \neq 0 , $$
and
$$ \left \| \begin{array}{cc} 0 &\mathfrak g ^ {i} \\ 0 &\mathfrak g _ {j} ^ {i} \\ \end{array} \right \| \ \ ( i , j = 1 \dots n ) . $$
By the Cartan–Laptev theorem, the $ \mathfrak g $- valued $ 1 $- form
$$ \theta = \ \left \| \begin{array}{cc} 0 &\omega ^ {i} \\ 0 &\omega _ {j} ^ {i} \\ \end{array} \right \| $$
on $ P $ is the connection form of a certain affine connection on $ M $ if and only if
$$ d \omega ^ {i} + \omega _ {j} ^ {i} \wedge \omega ^ {j} = \ \frac{1}{2} T _ {jk} ^ { i } \omega ^ {j} \wedge \omega ^ {k} , $$
$$ d \omega _ {j} ^ {i} = \omega _ {k} ^ {i} \wedge \omega _ {j} ^ {k} = \frac{1}{2} R _ {jkl} ^ {i} \omega ^ {k} \wedge \omega ^ {l} . $$
Here $ T _ {jk} ^ { i } $ and $ R _ {jkl} ^ {i} $ form, respectively, the torsion and curvature tensors of the affine connection on $ M $. The last two equations for the components of the connection form are called the structure equations for the affine connection on $ M $.
References
[1] | E. Cartan, "Espaces à connexion affine, projective et conforme" Acta Math. , 48 (1926) pp. 1–42 |
[2] | G.F. Laptev, "Differential geometry of imbedded manifolds. Group-theoretical method of differential-geometric investigations" Trudy Moskov. Mat. Obshch. , 2 (1953) pp. 275–382 (In Russian) |
[3] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 2 , Interscience (1969) |
Connection form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Connection_form&oldid=13808