Difference between revisions of "Resolution of the identity"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0815901.png | ||
+ | $#A+1 = 51 n = 0 | ||
+ | $#C+1 = 51 : ~/encyclopedia/old_files/data/R081/R.0801590 Resolution of the identity | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A one-parameter family $ \{ E _ \lambda \} $, | |
+ | $ - \infty < \lambda < \infty $, | ||
+ | of orthogonal projection operators acting on a Hilbert space $ {\mathcal H} $, | ||
+ | such that | ||
− | + | 1) $ E _ \lambda \leq E _ \mu $ | |
+ | if $ \lambda < \mu $; | ||
− | + | 2) $ E _ \lambda $ | |
+ | is strongly left continuous, i.e. $ E _ {\lambda - 0 } = E _ \lambda $ | ||
+ | for every $ \lambda \in ( - \infty , \infty ) $; | ||
− | + | 3) $ E _ \lambda \rightarrow 0 $ | |
+ | as $ \lambda \rightarrow - \infty $ | ||
+ | and $ E _ \lambda \rightarrow E $ | ||
+ | as $ \lambda \rightarrow \infty $; | ||
+ | here 0 and $ E $ | ||
+ | are the zero and the identity operator on the space $ {\mathcal H} $. | ||
− | + | Condition 2) can be replaced by the condition of strong right continuity at every point $ \lambda \in ( - \infty , \infty ) $. | |
− | + | Every [[Self-adjoint operator|self-adjoint operator]] $ A $ | |
+ | acting on $ {\mathcal H} $ | ||
+ | generates in a unique way a resolution of the identity. Here, in addition to 1)–3), the following conditions also hold: | ||
− | + | 4) if $ B $ | |
+ | is a bounded operator such that $ B A = A B $, | ||
+ | then $ B E _ \lambda = E _ \lambda B $ | ||
+ | for any $ \lambda $; | ||
− | + | 5) if $ A $ | |
+ | is a bounded operator and $ m $, | ||
+ | $ M $ | ||
+ | are its greatest lower and least upper bounds, respectively, then | ||
− | + | $$ | |
+ | E _ \lambda = 0 \textrm{ for } - \infty < \lambda < m \ \ | ||
+ | \textrm{ and } \ E _ \lambda = E \textrm{ for } M < \lambda < \infty . | ||
+ | $$ | ||
− | + | The resolution of the identity given by the operator $ A $ | |
+ | completely determines the spectral properties of that operator, namely: | ||
− | + | a) a point $ \lambda $ | |
+ | is a regular point of $ A $ | ||
+ | if and only if it is a point of constancy, that is, if there is a $ \delta > 0 $ | ||
+ | such that $ E _ \mu = E _ \lambda $ | ||
+ | for $ \mu \in ( \lambda - \delta , \lambda + \delta ) $; | ||
− | + | b) a point $ \lambda _ {0} $ | |
+ | is an eigenvalue of $ A $ | ||
+ | if and only if at this point $ E _ \lambda $ | ||
+ | has a jump, that is, $ E _ {\lambda _ {0} + 0 } - E _ {\lambda _ {0} } > 0 $; | ||
− | + | g) if $ E ( \Delta ) = E _ \mu - E _ \lambda $, | |
+ | then $ L _ {E ( \Delta ) } = E ( \Delta ) {\mathcal H} $ | ||
+ | is an invariant subspace of $ A $. | ||
− | + | Hence the resolution of the identity determined by the operator $ A $ | |
+ | is also called the spectral function of this operator (cf. [[Spectral resolution|Spectral resolution]]). | ||
− | + | Conversely, every resolution of the identity $ \{ E _ \lambda \} $ | |
+ | uniquely determines a self-adjoint operator $ A $ | ||
+ | for which this resolution is the spectral function. The domain of definition $ D ( A) $ | ||
+ | of $ A $ | ||
+ | consists exactly of those $ x \in {\mathcal H} $ | ||
+ | for which | ||
− | < | + | $$ |
+ | \int\limits _ {- \infty } ^ \infty \lambda ^ {2} d \langle E _ \lambda x , x \rangle | ||
+ | < \infty , | ||
+ | $$ | ||
+ | |||
+ | and there is a representation of $ A $ | ||
+ | as an operator Stieltjes integral: | ||
+ | |||
+ | $$ | ||
+ | A = \int\limits _ {- \infty } ^ \infty \lambda d E _ \lambda . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. Akhiezer, I.M. Glazman, "Theory of linear operators in a Hilbert space" , '''1–2''' , F. Ungar (1961–1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. Akhiezer, I.M. Glazman, "Theory of linear operators in a Hilbert space" , '''1–2''' , F. Ungar (1961–1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | To the property | + | To the property $ \gamma $) |
+ | mentioned above one may add that the spectrum of the restriction of $ A $ | ||
+ | to $ L _ {E( \Delta ) } $ | ||
+ | is contained in the set $ \Delta $. |
Latest revision as of 08:11, 6 June 2020
A one-parameter family $ \{ E _ \lambda \} $,
$ - \infty < \lambda < \infty $,
of orthogonal projection operators acting on a Hilbert space $ {\mathcal H} $,
such that
1) $ E _ \lambda \leq E _ \mu $ if $ \lambda < \mu $;
2) $ E _ \lambda $ is strongly left continuous, i.e. $ E _ {\lambda - 0 } = E _ \lambda $ for every $ \lambda \in ( - \infty , \infty ) $;
3) $ E _ \lambda \rightarrow 0 $ as $ \lambda \rightarrow - \infty $ and $ E _ \lambda \rightarrow E $ as $ \lambda \rightarrow \infty $; here 0 and $ E $ are the zero and the identity operator on the space $ {\mathcal H} $.
Condition 2) can be replaced by the condition of strong right continuity at every point $ \lambda \in ( - \infty , \infty ) $.
Every self-adjoint operator $ A $ acting on $ {\mathcal H} $ generates in a unique way a resolution of the identity. Here, in addition to 1)–3), the following conditions also hold:
4) if $ B $ is a bounded operator such that $ B A = A B $, then $ B E _ \lambda = E _ \lambda B $ for any $ \lambda $;
5) if $ A $ is a bounded operator and $ m $, $ M $ are its greatest lower and least upper bounds, respectively, then
$$ E _ \lambda = 0 \textrm{ for } - \infty < \lambda < m \ \ \textrm{ and } \ E _ \lambda = E \textrm{ for } M < \lambda < \infty . $$
The resolution of the identity given by the operator $ A $ completely determines the spectral properties of that operator, namely:
a) a point $ \lambda $ is a regular point of $ A $ if and only if it is a point of constancy, that is, if there is a $ \delta > 0 $ such that $ E _ \mu = E _ \lambda $ for $ \mu \in ( \lambda - \delta , \lambda + \delta ) $;
b) a point $ \lambda _ {0} $ is an eigenvalue of $ A $ if and only if at this point $ E _ \lambda $ has a jump, that is, $ E _ {\lambda _ {0} + 0 } - E _ {\lambda _ {0} } > 0 $;
g) if $ E ( \Delta ) = E _ \mu - E _ \lambda $, then $ L _ {E ( \Delta ) } = E ( \Delta ) {\mathcal H} $ is an invariant subspace of $ A $.
Hence the resolution of the identity determined by the operator $ A $ is also called the spectral function of this operator (cf. Spectral resolution).
Conversely, every resolution of the identity $ \{ E _ \lambda \} $ uniquely determines a self-adjoint operator $ A $ for which this resolution is the spectral function. The domain of definition $ D ( A) $ of $ A $ consists exactly of those $ x \in {\mathcal H} $ for which
$$ \int\limits _ {- \infty } ^ \infty \lambda ^ {2} d \langle E _ \lambda x , x \rangle < \infty , $$
and there is a representation of $ A $ as an operator Stieltjes integral:
$$ A = \int\limits _ {- \infty } ^ \infty \lambda d E _ \lambda . $$
References
[1] | F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French) |
[2] | N.I. Akhiezer, I.M. Glazman, "Theory of linear operators in a Hilbert space" , 1–2 , F. Ungar (1961–1963) (Translated from Russian) |
[3] | L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian) |
Comments
To the property $ \gamma $) mentioned above one may add that the spectrum of the restriction of $ A $ to $ L _ {E( \Delta ) } $ is contained in the set $ \Delta $.
Resolution of the identity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Resolution_of_the_identity&oldid=13743