Difference between revisions of "Resolution of the identity"
 (Importing text file)  | 
				Ulf Rehmann (talk | contribs)  m (tex encoded by computer)  | 
				||
| Line 1: | Line 1: | ||
| − | + | <!--  | |
| + | r0815901.png  | ||
| + | $#A+1 = 51 n = 0  | ||
| + | $#C+1 = 51 : ~/encyclopedia/old_files/data/R081/R.0801590 Resolution of the identity  | ||
| + | Automatically converted into TeX, above some diagnostics.  | ||
| + | Please remove this comment and the {{TEX|auto}} line below,  | ||
| + | if TeX found to be correct.  | ||
| + | -->  | ||
| − | + | {{TEX|auto}}  | |
| + | {{TEX|done}}  | ||
| − | + | A one-parameter family  $  \{ E _  \lambda  \} $,    | |
| + | $  - \infty < \lambda < \infty $,   | ||
| + | of orthogonal projection operators acting on a Hilbert space  $  {\mathcal H} $,   | ||
| + | such that  | ||
| − | + | 1)  $  E _  \lambda  \leq  E _  \mu  $  | |
| + | if  $  \lambda < \mu $;  | ||
| − | + | 2)  $  E _  \lambda  $  | |
| + | is strongly left continuous, i.e.  $  E _ {\lambda - 0 }  = E _  \lambda  $  | ||
| + | for every  $  \lambda \in ( - \infty , \infty ) $;  | ||
| − | + | 3)  $  E _  \lambda  \rightarrow 0 $  | |
| + | as  $  \lambda \rightarrow - \infty $  | ||
| + | and  $  E _  \lambda  \rightarrow E $  | ||
| + | as  $  \lambda \rightarrow \infty $;   | ||
| + | here 0 and  $  E $  | ||
| + | are the zero and the identity operator on the space  $  {\mathcal H} $.  | ||
| − | + | Condition 2) can be replaced by the condition of strong right continuity at every point  $  \lambda \in ( - \infty , \infty ) $.  | |
| − | + | Every [[Self-adjoint operator|self-adjoint operator]]  $  A $  | |
| + | acting on  $  {\mathcal H} $  | ||
| + | generates in a unique way a resolution of the identity. Here, in addition to 1)–3), the following conditions also hold:  | ||
| − | + | 4) if  $  B $  | |
| + | is a bounded operator such that  $  B A = A B $,   | ||
| + | then  $  B E _  \lambda  = E _  \lambda  B $  | ||
| + | for any  $  \lambda $;  | ||
| − | + | 5) if  $  A $  | |
| + | is a bounded operator and  $  m $,   | ||
| + | $  M $  | ||
| + | are its greatest lower and least upper bounds, respectively, then  | ||
| − | + | $$   | |
| + | E _  \lambda   =  0  \textrm{ for }  - \infty < \lambda < m \ \   | ||
| + | \textrm{ and } \  E _  \lambda   =  E  \textrm{ for }  M < \lambda < \infty .  | ||
| + | $$  | ||
| − | + | The resolution of the identity given by the operator  $  A $  | |
| + | completely determines the spectral properties of that operator, namely:  | ||
| − | + | a) a point  $  \lambda $  | |
| + | is a regular point of  $  A $  | ||
| + | if and only if it is a point of constancy, that is, if there is a  $  \delta > 0 $  | ||
| + | such that  $  E _  \mu  = E _  \lambda  $  | ||
| + | for  $  \mu \in ( \lambda - \delta , \lambda + \delta ) $;  | ||
| − | + | b) a point  $  \lambda _ {0} $  | |
| + | is an eigenvalue of  $  A $  | ||
| + | if and only if at this point  $  E _  \lambda  $  | ||
| + | has a jump, that is,  $  E _ {\lambda _ {0}  + 0 } - E _ {\lambda _ {0}  } > 0 $;  | ||
| − | + | g) if  $  E ( \Delta ) = E _  \mu  - E _  \lambda  $,   | |
| + | then  $  L _ {E ( \Delta ) }  = E ( \Delta ) {\mathcal H} $  | ||
| + | is an invariant subspace of  $  A $.  | ||
| − | + | Hence the resolution of the identity determined by the operator  $  A $  | |
| + | is also called the spectral function of this operator (cf. [[Spectral resolution|Spectral resolution]]).  | ||
| − | + | Conversely, every resolution of the identity  $  \{ E _  \lambda  \} $  | |
| + | uniquely determines a self-adjoint operator  $  A $  | ||
| + | for which this resolution is the spectral function. The domain of definition  $  D ( A) $  | ||
| + | of  $  A $  | ||
| + | consists exactly of those  $  x \in {\mathcal H} $  | ||
| + | for which  | ||
| − | <  | + | $$   | 
| + | \int\limits _ {- \infty } ^  \infty   \lambda  ^ {2}  d \langle  E _  \lambda  x , x \rangle  | ||
| + |  <  \infty ,  | ||
| + | $$  | ||
| + | |||
| + | and there is a representation of  $  A $  | ||
| + | as an operator Stieltjes integral:  | ||
| + | |||
| + | $$   | ||
| + | A  =  \int\limits _ {- \infty } ^  \infty   \lambda  d E _  \lambda  .  | ||
| + | $$  | ||
====References====  | ====References====  | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Riesz,   B. Szökefalvi-Nagy,   "Functional analysis" , F. Ungar  (1955)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.I. Akhiezer,   I.M. Glazman,   "Theory of linear operators in a Hilbert space" , '''1–2''' , F. Ungar  (1961–1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.V. Kantorovich,   G.P. Akilov,   "Functional analysis in normed spaces" , Pergamon  (1964)  (Translated from Russian)</TD></TR></table>  | <table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Riesz,   B. Szökefalvi-Nagy,   "Functional analysis" , F. Ungar  (1955)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.I. Akhiezer,   I.M. Glazman,   "Theory of linear operators in a Hilbert space" , '''1–2''' , F. Ungar  (1961–1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.V. Kantorovich,   G.P. Akilov,   "Functional analysis in normed spaces" , Pergamon  (1964)  (Translated from Russian)</TD></TR></table>  | ||
| − | |||
| − | |||
====Comments====  | ====Comments====  | ||
| − | To the property   | + | To the property  $  \gamma $)    | 
| + | mentioned above one may add that the spectrum of the restriction of  $  A $  | ||
| + | to  $  L _ {E( \Delta ) }  $  | ||
| + | is contained in the set  $  \Delta $.  | ||
Latest revision as of 08:11, 6 June 2020
A one-parameter family  $  \{ E _  \lambda  \} $, 
$  - \infty < \lambda < \infty $, 
of orthogonal projection operators acting on a Hilbert space  $  {\mathcal H} $, 
such that
1) $ E _ \lambda \leq E _ \mu $ if $ \lambda < \mu $;
2) $ E _ \lambda $ is strongly left continuous, i.e. $ E _ {\lambda - 0 } = E _ \lambda $ for every $ \lambda \in ( - \infty , \infty ) $;
3) $ E _ \lambda \rightarrow 0 $ as $ \lambda \rightarrow - \infty $ and $ E _ \lambda \rightarrow E $ as $ \lambda \rightarrow \infty $; here 0 and $ E $ are the zero and the identity operator on the space $ {\mathcal H} $.
Condition 2) can be replaced by the condition of strong right continuity at every point $ \lambda \in ( - \infty , \infty ) $.
Every self-adjoint operator $ A $ acting on $ {\mathcal H} $ generates in a unique way a resolution of the identity. Here, in addition to 1)–3), the following conditions also hold:
4) if $ B $ is a bounded operator such that $ B A = A B $, then $ B E _ \lambda = E _ \lambda B $ for any $ \lambda $;
5) if $ A $ is a bounded operator and $ m $, $ M $ are its greatest lower and least upper bounds, respectively, then
$$ E _ \lambda = 0 \textrm{ for } - \infty < \lambda < m \ \ \textrm{ and } \ E _ \lambda = E \textrm{ for } M < \lambda < \infty . $$
The resolution of the identity given by the operator $ A $ completely determines the spectral properties of that operator, namely:
a) a point $ \lambda $ is a regular point of $ A $ if and only if it is a point of constancy, that is, if there is a $ \delta > 0 $ such that $ E _ \mu = E _ \lambda $ for $ \mu \in ( \lambda - \delta , \lambda + \delta ) $;
b) a point $ \lambda _ {0} $ is an eigenvalue of $ A $ if and only if at this point $ E _ \lambda $ has a jump, that is, $ E _ {\lambda _ {0} + 0 } - E _ {\lambda _ {0} } > 0 $;
g) if $ E ( \Delta ) = E _ \mu - E _ \lambda $, then $ L _ {E ( \Delta ) } = E ( \Delta ) {\mathcal H} $ is an invariant subspace of $ A $.
Hence the resolution of the identity determined by the operator $ A $ is also called the spectral function of this operator (cf. Spectral resolution).
Conversely, every resolution of the identity $ \{ E _ \lambda \} $ uniquely determines a self-adjoint operator $ A $ for which this resolution is the spectral function. The domain of definition $ D ( A) $ of $ A $ consists exactly of those $ x \in {\mathcal H} $ for which
$$ \int\limits _ {- \infty } ^ \infty \lambda ^ {2} d \langle E _ \lambda x , x \rangle < \infty , $$
and there is a representation of $ A $ as an operator Stieltjes integral:
$$ A = \int\limits _ {- \infty } ^ \infty \lambda d E _ \lambda . $$
References
| [1] | F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French) | 
| [2] | N.I. Akhiezer, I.M. Glazman, "Theory of linear operators in a Hilbert space" , 1–2 , F. Ungar (1961–1963) (Translated from Russian) | 
| [3] | L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian) | 
Comments
To the property $ \gamma $) mentioned above one may add that the spectrum of the restriction of $ A $ to $ L _ {E( \Delta ) } $ is contained in the set $ \Delta $.
Resolution of the identity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Resolution_of_the_identity&oldid=13743