|
|
Line 1: |
Line 1: |
− | ''modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c0272902.png" />'' | + | {{TEX|done}} |
| + | ''modulo $m$'' |
| | | |
− | An integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c0272903.png" /> for which the [[Congruence|congruence]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c0272904.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c0272905.png" />) is solvable. If the congruence has no solution, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c0272906.png" /> is called a cubic non-residue modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c0272908.png" />. If the modulus is a prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c0272909.png" />, the congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729010.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729011.png" />) may be checked for solvability using Euler's criterion: The congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729012.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729013.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729014.png" />, is solvable if and only if | + | An integer $a$ for which the [[Congruence|congruence]] $x^3=a$ ($\bmod\,m$) is solvable. If the congruence has no solution, $a$ is called a cubic non-residue modulo $m$. If the modulus is a prime number $p$, the congruence $x^3\equiv a$ ($\bmod\,p$) may be checked for solvability using Euler's criterion: The congruence $x^3\equiv a$ ($\bmod\,p$), $(a,p)=1$, is solvable if and only if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729015.png" /></td> </tr></table>
| + | $$a^{(p-1)/q}\equiv1\pmod p,$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729016.png" />. When the condition is satisfied, the congruence has exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729017.png" /> distinct solutions modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729018.png" />. It follows from the criterion, in particular, that for a prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729019.png" />, the sequence of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729020.png" /> contains exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729021.png" /> cubic non-residues and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729022.png" /> cubic residues modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729023.png" />. | + | where $q=(3,p-1)$. When the condition is satisfied, the congruence has exactly $q$ distinct solutions modulo $p$. It follows from the criterion, in particular, that for a prime number $p$, the sequence of numbers $1,\dots,p-1$ contains exactly $(q-1)(p-1)/q$ cubic non-residues and $(p-1)/q$ cubic residues modulo $p$. |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | From [[Class field theory|class field theory]] one obtains, e.g., that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729024.png" /> is a cubic residue modulo a prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729025.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729026.png" /> can be written in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729027.png" /> with integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027290/c02729029.png" />. See also [[Quadratic residue|Quadratic residue]]; [[Reciprocity laws|Reciprocity laws]]; [[Complete system of residues|Complete system of residues]]; [[Reduced system of residues|Reduced system of residues]]. | + | From [[Class field theory|class field theory]] one obtains, e.g., that $2$ is a cubic residue modulo a prime number $p$ if and only if $p$ can be written in the form $p=x^2+27y^2$ with integers $x$ and $y$. See also [[Quadratic residue|Quadratic residue]]; [[Reciprocity laws|Reciprocity laws]]; [[Complete system of residues|Complete system of residues]]; [[Reduced system of residues|Reduced system of residues]]. |
Revision as of 13:31, 14 September 2014
modulo $m$
An integer $a$ for which the congruence $x^3=a$ ($\bmod\,m$) is solvable. If the congruence has no solution, $a$ is called a cubic non-residue modulo $m$. If the modulus is a prime number $p$, the congruence $x^3\equiv a$ ($\bmod\,p$) may be checked for solvability using Euler's criterion: The congruence $x^3\equiv a$ ($\bmod\,p$), $(a,p)=1$, is solvable if and only if
$$a^{(p-1)/q}\equiv1\pmod p,$$
where $q=(3,p-1)$. When the condition is satisfied, the congruence has exactly $q$ distinct solutions modulo $p$. It follows from the criterion, in particular, that for a prime number $p$, the sequence of numbers $1,\dots,p-1$ contains exactly $(q-1)(p-1)/q$ cubic non-residues and $(p-1)/q$ cubic residues modulo $p$.
From class field theory one obtains, e.g., that $2$ is a cubic residue modulo a prime number $p$ if and only if $p$ can be written in the form $p=x^2+27y^2$ with integers $x$ and $y$. See also Quadratic residue; Reciprocity laws; Complete system of residues; Reduced system of residues.
How to Cite This Entry:
Cubic residue. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cubic_residue&oldid=13695
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article