Difference between revisions of "Bateman method"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0153701.png | ||
+ | $#A+1 = 4 n = 0 | ||
+ | $#C+1 = 4 : ~/encyclopedia/old_files/data/B015/B.0105370 Bateman method | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A method for approximating the integral operator of a one-dimensional integral Fredholm equation of the second kind; it is a particular case of the method of degenerate kernels (cf. [[Degenerate kernels, method of|Degenerate kernels, method of]]). In Bateman's method, the degenerate kernel $ K _ {N} (x, s) $ | |
+ | is constructed according to the rule: | ||
− | + | $$ | |
+ | K _ {N} (x, s) = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | - | ||
+ | \frac{\left | | ||
+ | \begin{array}{cccc} | ||
+ | 0 &K (x,\ | ||
+ | s _ {1} ) &\dots &K (x, s _ {N} ) \\ | ||
+ | K(x _ {1} , s) &K (x _ {1} , s _ {1} ) &\dots &K (x _ {1} , s _ {N} ) \\ | ||
+ | \dots &\dots &\dots &\dots \\ | ||
+ | K(x _ {N} , s) &K (x _ {N} , s _ {1} ) &\dots &K (x _ {N} , s _ {N} ) \\ | ||
+ | \end{array} | ||
+ | \right | }{\left | | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | K(x _ {1} , s _ {1} ) &\dots &K(x _ {1} , s _ {N} ) \\ | ||
+ | \dots &\dots &\dots \\ | ||
+ | K(x _ {N} , s _ {1} ) &\dots &K(x _ {N} , s _ {N} ) \\ | ||
+ | \end{array} | ||
+ | \right | } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ s _ {i} , x _ {i} , i = 1 \dots N $, | ||
+ | are certain points on the integration segment of the integral equation considered. The method was proposed by H. Bateman [[#References|[1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Bateman, ''Messeng. Math.'' , '''37''' (1908) pp. 179–187</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Kantorovich, V.I. Krylov, "Approximate methods of higher analysis" , Noordhoff (1958) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Bateman, ''Messeng. Math.'' , '''37''' (1908) pp. 179–187</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Kantorovich, V.I. Krylov, "Approximate methods of higher analysis" , Noordhoff (1958) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Bateman, ''Proc. Roy. Soc. A'' (1922) pp. 441–449</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Bateman, ''Proc. Roy. Soc. A'' (1922) pp. 441–449</TD></TR></table> |
Latest revision as of 10:33, 29 May 2020
A method for approximating the integral operator of a one-dimensional integral Fredholm equation of the second kind; it is a particular case of the method of degenerate kernels (cf. Degenerate kernels, method of). In Bateman's method, the degenerate kernel $ K _ {N} (x, s) $
is constructed according to the rule:
$$ K _ {N} (x, s) = $$
$$ = \ - \frac{\left | \begin{array}{cccc} 0 &K (x,\ s _ {1} ) &\dots &K (x, s _ {N} ) \\ K(x _ {1} , s) &K (x _ {1} , s _ {1} ) &\dots &K (x _ {1} , s _ {N} ) \\ \dots &\dots &\dots &\dots \\ K(x _ {N} , s) &K (x _ {N} , s _ {1} ) &\dots &K (x _ {N} , s _ {N} ) \\ \end{array} \right | }{\left | \begin{array}{ccc} K(x _ {1} , s _ {1} ) &\dots &K(x _ {1} , s _ {N} ) \\ \dots &\dots &\dots \\ K(x _ {N} , s _ {1} ) &\dots &K(x _ {N} , s _ {N} ) \\ \end{array} \right | } , $$
where $ s _ {i} , x _ {i} , i = 1 \dots N $, are certain points on the integration segment of the integral equation considered. The method was proposed by H. Bateman [1].
References
[1] | H. Bateman, Messeng. Math. , 37 (1908) pp. 179–187 |
[2] | L.V. Kantorovich, V.I. Krylov, "Approximate methods of higher analysis" , Noordhoff (1958) (Translated from Russian) |
Comments
References
[a1] | H. Bateman, Proc. Roy. Soc. A (1922) pp. 441–449 |
Bateman method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bateman_method&oldid=13678