Namespaces
Variants
Actions

Difference between revisions of "Chern number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A [[Characteristic number|characteristic number]] of a quasi-complex manifold. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220401.png" /> be an arbitrary characteristic class. For a closed quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220402.png" /> the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220403.png" /> is called the Chern number of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220404.png" /> corresponding to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220405.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220406.png" /> is the [[Fundamental class|fundamental class]] of the manifold, or the orientation, uniquely determined by the quasi-complex structure, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220407.png" /> is the tangent bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220408.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220409.png" /> is taken to be a characteristic class with rational coefficients, then the corresponding Chern number will be rational. The Chern number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204010.png" /> depends only on the homogeneous component of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204011.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204012.png" />. The Chern numbers are quasi-complex bordism invariants, and hence the characteristic class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204013.png" /> induces a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204014.png" />.
+
<!--
 +
c0220401.png
 +
$#A+1 = 116 n = 0
 +
$#C+1 = 116 : ~/encyclopedia/old_files/data/C022/C.0202040 Chern number
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A partition of a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204015.png" /> is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204016.png" /> of non-negative integers with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204017.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204018.png" /> are two quasi-complex manifolds of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204019.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204020.png" /> (cf. [[Chern class|Chern class]]) for all partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204021.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204022.png" />, then the manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204023.png" /> are cobordant (in the quasi-complex sense).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204024.png" /> be a free Abelian group with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204025.png" /> in one-to-one correspondence with the set of all partitions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204026.png" />. The cited theorem asserts that the homomorphism
+
A [[Characteristic number|characteristic number]] of a quasi-complex manifold. Let $  x \in H  ^ {**} (  \mathop{\rm BU} _ {n} ) $
 +
be an arbitrary characteristic class. For a closed quasi-complex manifold  $  M  ^ {2n} $
 +
the integer  $  x [ M  ^ {2n} ] = \langle  x ( \tau M ) , [ M  ^ {2n} ] \rangle $
 +
is called the Chern number of the manifold  $  M  ^ {2n} $
 +
corresponding to the class  $  x $.  
 +
Here  $  [ M  ^ {2n} ] \in H _ {2n} ( M  ^ {2n} ) $
 +
is the [[Fundamental class|fundamental class]] of the manifold, or the orientation, uniquely determined by the quasi-complex structure, and  $  \tau M $
 +
is the tangent bundle of  $  M $.
 +
If  $  x $
 +
is taken to be a characteristic class with rational coefficients, then the corresponding Chern number will be rational. The Chern number  $  x [ M  ^ {2n} ] $
 +
depends only on the homogeneous component of $  x $
 +
of degree  $  2n $.  
 +
The Chern numbers are quasi-complex bordism invariants, and hence the characteristic class  $  x $
 +
induces a homomorphism $  \Omega _ {2n}  ^ {u} \rightarrow \mathbf Z $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204027.png" /></td> </tr></table>
+
A partition of a number  $  n $
 +
is a set  $  \omega = \{ i _ {1} \dots i _ {k} \} $
 +
of non-negative integers with  $  i _ {1} + \dots + i _ {k} = n $.
 +
If  $  M , N $
 +
are two quasi-complex manifolds of dimension  $  2n $
 +
such that  $  c _  \omega  [ M] = c _  \omega  [ N ] $(
 +
cf. [[Chern class|Chern class]]) for all partitions  $  \omega $
 +
of  $  n $,
 +
then the manifolds  $  M , N $
 +
are cobordant (in the quasi-complex sense).
  
is a monomorphism. Below a description of the image of the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204028.png" /> is given (the Milnor–Hirzebruch problem). In other words, which sets of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204029.png" />, defined for all partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204030.png" /> of a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204031.png" />, arise as the Chern numbers of quasi-complex manifolds? A Chern number can be defined in an arbitrary multiplicative oriented cohomology theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204032.png" />, except that in this case the Chern number of a quasi-complex manifold will be an element of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png" />. Dual to the cohomology theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204034.png" /> is a homology theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204035.png" />, and since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204036.png" /> is oriented and multiplicative, there is for each quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204037.png" /> a unique fundamental class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204039.png" />. Moreover, as in the ordinary theory there is a pairing
+
Let  $  A $
 +
be a free Abelian group with basis  $  \{ e _  \omega  \} = \{ e _ {i _ {1}  \dots i _ {k} } \} $
 +
in one-to-one correspondence with the set of all partitions of $  n $.  
 +
The cited theorem asserts that the homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204040.png" /></td> </tr></table>
+
$$
 +
\phi : \Omega _ {2n}  ^ {u}  \rightarrow  A ,\ \
 +
\phi ( [ M  ^ {2n} ] )  = \sum _  \omega  c _  \omega  [ M  ^ {2n} ] e _  \omega  $$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204041.png" />, then the application of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204042.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204043.png" /> with respect to this pairing is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204044.png" />. For a characteristic class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204045.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204046.png" /> and a closed quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204047.png" />, the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204048.png" /> is called the Chern number in the theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204049.png" />. The preceding considerations apply also to [[K-theory|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204050.png" />-theory]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204051.png" /> be a quasi-complex manifold (possibly with boundary), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204052.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204053.png" /> be an arbitrary element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204054.png" />. Then the integer
+
is a monomorphism. Below a description of the image of the homomorphism  $  \phi $
 +
is given (the Milnor–Hirzebruch problem). In other words, which sets of integers  $  a _  \omega  = a _ {i _ {1}  \dots i _ {k} } $,
 +
defined for all partitions  $  \omega $
 +
of a number  $  n $,
 +
arise as the Chern numbers of quasi-complex manifolds? A Chern number can be defined in an arbitrary multiplicative oriented cohomology theory  $  h  ^ {*} $,  
 +
except that in this case the Chern number of a quasi-complex manifold will be an element of the ring  $  h  ^ {*} (  \mathop{\rm pt} ) $.  
 +
Dual to the cohomology theory $  h  ^ {*} $
 +
is a homology theory $  h _ {*} $,
 +
and since  $  h  ^ {*} $
 +
is oriented and multiplicative, there is for each quasi-complex manifold $  M $
 +
a unique fundamental class  $  [ M , \partial  M ]  ^ {h} \in h _ {2n} ( M , \partial  M ) $,  
 +
where  $  2n = \mathop{\rm dim}  M $.  
 +
Moreover, as in the ordinary theory there is a pairing
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204055.png" /></td> </tr></table>
+
$$
 +
h  ^ {n} ( M , \partial  M ) \otimes h _ {m} ( M ,\
 +
\partial  M )  \rightarrow  h  ^ {n-} m (  \mathop{\rm pt} ) .
 +
$$
 +
 
 +
If  $  x \in H  ^ {*} ( M , \partial  M ) $,
 +
then the application of  $  x $
 +
to  $  [ M , \partial  M ]  ^ {h} $
 +
with respect to this pairing is denoted by  $  \{ x , [ M , \partial  M ]  ^ {h} \} \in h  ^ {*} (  \mathop{\rm pt} ) $.
 +
For a characteristic class $  y $
 +
with values in  $  h  ^ {*} $
 +
and a closed quasi-complex manifold  $  M $,
 +
the element  $  \{ y ( \tau M ) , [ M ]  ^ {h} \} $
 +
is called the Chern number in the theory  $  h  ^ {*} $.
 +
The preceding considerations apply also to [[K-theory| $  K $-
 +
theory]]. Let  $  M $
 +
be a quasi-complex manifold (possibly with boundary), let  $  \mathop{\rm dim} _ {\mathbf R }  M = 2n $
 +
and let  $  x $
 +
be an arbitrary element of  $  K  ^ {0} ( M , \partial  M ) $.
 +
Then the integer
 +
 
 +
$$
 +
\{ x , [ M , \partial  M ]  ^ {k} \}  \in  K  ^ {-} 2n
 +
(  \mathop{\rm pt} )  \cong ^ { {\beta  ^ {n}} }  K  ^ {0} (  \mathop{\rm pt} )  = \mathbf Z
 +
$$
  
 
can be computed according to the formula
 
can be computed according to the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204056.png" /></td> </tr></table>
+
$$
 +
\{ x , [ M , \partial  M ]  ^ {k} \}  = \
 +
\langle  \mathop{\rm ch}  x T ( \tau M ) , [ M , \partial  M ] \rangle ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204057.png" /> is the [[Todd class|Todd class]] given by the series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204058.png" />. If the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204059.png" /> is closed, then putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204060.png" /> one obtains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204061.png" />. The characteristic number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204062.png" /> is called the Todd genus of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204063.png" /> and is an integer for any quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204064.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204065.png" /> is often denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204066.png" />.
+
where $  T $
 +
is the [[Todd class|Todd class]] given by the series $  \prod _ {i=} 1  ^ {n} x _ {i} / ( 1 - e ^ {x _ {i} } ) $.  
 +
If the manifold $  M $
 +
is closed, then putting $  x = 1 \in K  ^ {0} ( M) $
 +
one obtains $  \{ 1 , [ M ]  ^ {k} \} = T [ M] $.  
 +
The characteristic number $  T [ M ] $
 +
is called the Todd genus of the manifold $  M $
 +
and is an integer for any quasi-complex manifold $  M $.  
 +
$  T [ M ] $
 +
is often denoted by $  \mathop{\rm Td} ( M) $.
  
One of the most important examples of a quasi-complex manifold is a tangent manifold. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204067.png" /> be a closed real manifold of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204068.png" />. The manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204069.png" /> of all tangent vectors to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204070.png" /> has a natural quasi-complex structure: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204072.png" />. Fix a Riemannian metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204073.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204074.png" /> denote the manifold with boundary consisting of all vectors of length not exceeding one. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204075.png" />, then the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204076.png" /> is called the topological index of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204077.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204078.png" /> is the class of the symbol of an elliptic operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204079.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204080.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204081.png" /> (the Atiyah–Singer theorem), and applying the above formula for computing the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204082.png" /> leads to the cohomological form of the index theorem.
+
One of the most important examples of a quasi-complex manifold is a tangent manifold. Let $  N $
 +
be a closed real manifold of dimension $  n $.  
 +
The manifold $  TN $
 +
of all tangent vectors to $  N $
 +
has a natural quasi-complex structure: $  \tau T N = \tau N \oplus N $,
 +
$  i ( x , y ) = ( y , - x ) $.  
 +
Fix a Riemannian metric on $  N $
 +
and let $  BN \subset  TN $
 +
denote the manifold with boundary consisting of all vectors of length not exceeding one. If $  \sigma \in K  ^ {0} ( BN , \partial  BN ) $,  
 +
then the integer $  i _ {t} ( \sigma ) = \{ \sigma , [ BN , \partial  BN ]  ^ {k} \} $
 +
is called the topological index of the element $  \sigma $.  
 +
If $  \sigma $
 +
is the class of the symbol of an elliptic operator $  D $
 +
defined on $  N $,  
 +
then $  \textrm{ index }  D = i _ {t} ( \sigma ) $(
 +
the Atiyah–Singer theorem), and applying the above formula for computing the integer $  \{ x , [ M , \partial  M ]  ^ {k} \} $
 +
leads to the cohomological form of the index theorem.
  
For a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204083.png" /> of non-negative integers and a closed quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204084.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204085.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204086.png" /> be the Chern number in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204087.png" />-theory:
+
For a set $  \omega = \{ i _ {1} \dots i _ {n} \} $
 +
of non-negative integers and a closed quasi-complex manifold $  M $
 +
of dimension $  2n $,  
 +
let $  S _  \omega  ^ {k} [ M] $
 +
be the Chern number in $  K $-
 +
theory:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204088.png" /></td> </tr></table>
+
$$
 +
S _  \omega  ^ {k} [ M]  = S _  \omega  ( \gamma _ {1} \dots
 +
\gamma _ {n} ) [ M] =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204089.png" /></td> </tr></table>
+
$$
 +
= \
 +
\{ S _  \omega  ( \gamma _ {1} \dots \gamma _ {n} ) ( \tau M ) , [ M]  ^ {k} \} ,
 +
$$
  
and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204090.png" /> be the ordinary Chern number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204091.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204092.png" /> can be distinct from zero only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204093.png" /> is a partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204094.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204095.png" /> can be distinct from zero for sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204096.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204097.png" />. Any homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204098.png" /> can be expressed as a linear combination with integer coefficients of homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204099.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040100.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040101.png" /> (the Stong–Hattori theorem). The characteristic numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040102.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040103.png" /> can be expressed in the form
+
and let $  S _  \omega  [ M] $
 +
be the ordinary Chern number $  S _  \omega  ( c _ {1} \dots c _ {n} ) [ M] $.  
 +
The number $  S _  \omega  [ M] $
 +
can be distinct from zero only if $  \omega $
 +
is a partition of $  n $.  
 +
The number $  S _  \omega  ^ {k} [ M] $
 +
can be distinct from zero for sets $  \omega = \{ i _ {1} \dots i _ {k} \} $
 +
with $  i _ {1} + \dots + i _ {k} \leq  n $.  
 +
Any homomorphisms $  \Omega _ {2n}  ^ {u} \rightarrow \mathbf Z $
 +
can be expressed as a linear combination with integer coefficients of homomorphisms $  S _  \omega  ^ {k} : \Omega _ {2n}  ^ {u} \rightarrow \mathbf Z $,  
 +
with $  | \omega | \leq  n $,  
 +
where $  | \omega | = i _ {1} + \dots i _ {k} $(
 +
the Stong–Hattori theorem). The characteristic numbers $  S _  \omega  ^ {k} [ M] $
 +
with $  | \omega | \leq  n $
 +
can be expressed in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040104.png" /></td> </tr></table>
+
$$
 +
S _  \omega  ^ {k} [ M]  = \sum _
 +
{| \omega  ^  \prime  | = n } r _ {\omega  ^  \prime  } c _ {\omega  ^  \prime  } [ M] ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040105.png" /> are rational coefficients and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040106.png" /> is any closed quasi-complex manifold of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040107.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040108.png" /> be an arbitrary element of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040110.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040111.png" />. Then the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040112.png" /> lies in the image of the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040113.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040114.png" /> is an integer for all sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040115.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040116.png" />.
+
where $  r _ {\omega  ^  \prime  } $
 +
are rational coefficients and $  M $
 +
is any closed quasi-complex manifold of dimension $  2n $.  
 +
Let $  a $
 +
be an arbitrary element of the group $  A $,  
 +
$  a= \sum _ {| \omega  ^  \prime  | = n } a _ {\omega  ^  \prime  } e _ {\omega  ^  \prime  } $
 +
and let $  S _  \omega  ^ {k} ( a) = \sum _ {| \omega  ^  \prime  | = n } r _ {\omega  ^  \prime  } a _ {\omega  ^  \prime  } $.  
 +
Then the element $  a \in A $
 +
lies in the image of the homomorphism $  \phi : \Omega _ {2n}  ^ {u} \rightarrow A $
 +
if and only if $  S _  \omega  ^ {k} $
 +
is an integer for all sets $  \omega $
 +
with $  | \omega | \leq  n $.
  
 
For references see [[Chern class|Chern class]].
 
For references see [[Chern class|Chern class]].
 
 
  
 
====Comments====
 
====Comments====
 
Cf. [[Cobordism|Cobordism]] for the notions  "quasi-complex manifold"  and  "complex-oriented cohomology theory" . Cf. also the comments to [[Chern class|Chern class]].
 
Cf. [[Cobordism|Cobordism]] for the notions  "quasi-complex manifold"  and  "complex-oriented cohomology theory" . Cf. also the comments to [[Chern class|Chern class]].

Revision as of 16:43, 4 June 2020


A characteristic number of a quasi-complex manifold. Let $ x \in H ^ {**} ( \mathop{\rm BU} _ {n} ) $ be an arbitrary characteristic class. For a closed quasi-complex manifold $ M ^ {2n} $ the integer $ x [ M ^ {2n} ] = \langle x ( \tau M ) , [ M ^ {2n} ] \rangle $ is called the Chern number of the manifold $ M ^ {2n} $ corresponding to the class $ x $. Here $ [ M ^ {2n} ] \in H _ {2n} ( M ^ {2n} ) $ is the fundamental class of the manifold, or the orientation, uniquely determined by the quasi-complex structure, and $ \tau M $ is the tangent bundle of $ M $. If $ x $ is taken to be a characteristic class with rational coefficients, then the corresponding Chern number will be rational. The Chern number $ x [ M ^ {2n} ] $ depends only on the homogeneous component of $ x $ of degree $ 2n $. The Chern numbers are quasi-complex bordism invariants, and hence the characteristic class $ x $ induces a homomorphism $ \Omega _ {2n} ^ {u} \rightarrow \mathbf Z $.

A partition of a number $ n $ is a set $ \omega = \{ i _ {1} \dots i _ {k} \} $ of non-negative integers with $ i _ {1} + \dots + i _ {k} = n $. If $ M , N $ are two quasi-complex manifolds of dimension $ 2n $ such that $ c _ \omega [ M] = c _ \omega [ N ] $( cf. Chern class) for all partitions $ \omega $ of $ n $, then the manifolds $ M , N $ are cobordant (in the quasi-complex sense).

Let $ A $ be a free Abelian group with basis $ \{ e _ \omega \} = \{ e _ {i _ {1} \dots i _ {k} } \} $ in one-to-one correspondence with the set of all partitions of $ n $. The cited theorem asserts that the homomorphism

$$ \phi : \Omega _ {2n} ^ {u} \rightarrow A ,\ \ \phi ( [ M ^ {2n} ] ) = \sum _ \omega c _ \omega [ M ^ {2n} ] e _ \omega $$

is a monomorphism. Below a description of the image of the homomorphism $ \phi $ is given (the Milnor–Hirzebruch problem). In other words, which sets of integers $ a _ \omega = a _ {i _ {1} \dots i _ {k} } $, defined for all partitions $ \omega $ of a number $ n $, arise as the Chern numbers of quasi-complex manifolds? A Chern number can be defined in an arbitrary multiplicative oriented cohomology theory $ h ^ {*} $, except that in this case the Chern number of a quasi-complex manifold will be an element of the ring $ h ^ {*} ( \mathop{\rm pt} ) $. Dual to the cohomology theory $ h ^ {*} $ is a homology theory $ h _ {*} $, and since $ h ^ {*} $ is oriented and multiplicative, there is for each quasi-complex manifold $ M $ a unique fundamental class $ [ M , \partial M ] ^ {h} \in h _ {2n} ( M , \partial M ) $, where $ 2n = \mathop{\rm dim} M $. Moreover, as in the ordinary theory there is a pairing

$$ h ^ {n} ( M , \partial M ) \otimes h _ {m} ( M ,\ \partial M ) \rightarrow h ^ {n-} m ( \mathop{\rm pt} ) . $$

If $ x \in H ^ {*} ( M , \partial M ) $, then the application of $ x $ to $ [ M , \partial M ] ^ {h} $ with respect to this pairing is denoted by $ \{ x , [ M , \partial M ] ^ {h} \} \in h ^ {*} ( \mathop{\rm pt} ) $. For a characteristic class $ y $ with values in $ h ^ {*} $ and a closed quasi-complex manifold $ M $, the element $ \{ y ( \tau M ) , [ M ] ^ {h} \} $ is called the Chern number in the theory $ h ^ {*} $. The preceding considerations apply also to $ K $- theory. Let $ M $ be a quasi-complex manifold (possibly with boundary), let $ \mathop{\rm dim} _ {\mathbf R } M = 2n $ and let $ x $ be an arbitrary element of $ K ^ {0} ( M , \partial M ) $. Then the integer

$$ \{ x , [ M , \partial M ] ^ {k} \} \in K ^ {-} 2n ( \mathop{\rm pt} ) \cong ^ { {\beta ^ {n}} } K ^ {0} ( \mathop{\rm pt} ) = \mathbf Z $$

can be computed according to the formula

$$ \{ x , [ M , \partial M ] ^ {k} \} = \ \langle \mathop{\rm ch} x T ( \tau M ) , [ M , \partial M ] \rangle , $$

where $ T $ is the Todd class given by the series $ \prod _ {i=} 1 ^ {n} x _ {i} / ( 1 - e ^ {x _ {i} } ) $. If the manifold $ M $ is closed, then putting $ x = 1 \in K ^ {0} ( M) $ one obtains $ \{ 1 , [ M ] ^ {k} \} = T [ M] $. The characteristic number $ T [ M ] $ is called the Todd genus of the manifold $ M $ and is an integer for any quasi-complex manifold $ M $. $ T [ M ] $ is often denoted by $ \mathop{\rm Td} ( M) $.

One of the most important examples of a quasi-complex manifold is a tangent manifold. Let $ N $ be a closed real manifold of dimension $ n $. The manifold $ TN $ of all tangent vectors to $ N $ has a natural quasi-complex structure: $ \tau T N = \tau N \oplus N $, $ i ( x , y ) = ( y , - x ) $. Fix a Riemannian metric on $ N $ and let $ BN \subset TN $ denote the manifold with boundary consisting of all vectors of length not exceeding one. If $ \sigma \in K ^ {0} ( BN , \partial BN ) $, then the integer $ i _ {t} ( \sigma ) = \{ \sigma , [ BN , \partial BN ] ^ {k} \} $ is called the topological index of the element $ \sigma $. If $ \sigma $ is the class of the symbol of an elliptic operator $ D $ defined on $ N $, then $ \textrm{ index } D = i _ {t} ( \sigma ) $( the Atiyah–Singer theorem), and applying the above formula for computing the integer $ \{ x , [ M , \partial M ] ^ {k} \} $ leads to the cohomological form of the index theorem.

For a set $ \omega = \{ i _ {1} \dots i _ {n} \} $ of non-negative integers and a closed quasi-complex manifold $ M $ of dimension $ 2n $, let $ S _ \omega ^ {k} [ M] $ be the Chern number in $ K $- theory:

$$ S _ \omega ^ {k} [ M] = S _ \omega ( \gamma _ {1} \dots \gamma _ {n} ) [ M] = $$

$$ = \ \{ S _ \omega ( \gamma _ {1} \dots \gamma _ {n} ) ( \tau M ) , [ M] ^ {k} \} , $$

and let $ S _ \omega [ M] $ be the ordinary Chern number $ S _ \omega ( c _ {1} \dots c _ {n} ) [ M] $. The number $ S _ \omega [ M] $ can be distinct from zero only if $ \omega $ is a partition of $ n $. The number $ S _ \omega ^ {k} [ M] $ can be distinct from zero for sets $ \omega = \{ i _ {1} \dots i _ {k} \} $ with $ i _ {1} + \dots + i _ {k} \leq n $. Any homomorphisms $ \Omega _ {2n} ^ {u} \rightarrow \mathbf Z $ can be expressed as a linear combination with integer coefficients of homomorphisms $ S _ \omega ^ {k} : \Omega _ {2n} ^ {u} \rightarrow \mathbf Z $, with $ | \omega | \leq n $, where $ | \omega | = i _ {1} + \dots i _ {k} $( the Stong–Hattori theorem). The characteristic numbers $ S _ \omega ^ {k} [ M] $ with $ | \omega | \leq n $ can be expressed in the form

$$ S _ \omega ^ {k} [ M] = \sum _ {| \omega ^ \prime | = n } r _ {\omega ^ \prime } c _ {\omega ^ \prime } [ M] , $$

where $ r _ {\omega ^ \prime } $ are rational coefficients and $ M $ is any closed quasi-complex manifold of dimension $ 2n $. Let $ a $ be an arbitrary element of the group $ A $, $ a= \sum _ {| \omega ^ \prime | = n } a _ {\omega ^ \prime } e _ {\omega ^ \prime } $ and let $ S _ \omega ^ {k} ( a) = \sum _ {| \omega ^ \prime | = n } r _ {\omega ^ \prime } a _ {\omega ^ \prime } $. Then the element $ a \in A $ lies in the image of the homomorphism $ \phi : \Omega _ {2n} ^ {u} \rightarrow A $ if and only if $ S _ \omega ^ {k} $ is an integer for all sets $ \omega $ with $ | \omega | \leq n $.

For references see Chern class.

Comments

Cf. Cobordism for the notions "quasi-complex manifold" and "complex-oriented cohomology theory" . Cf. also the comments to Chern class.

How to Cite This Entry:
Chern number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chern_number&oldid=13675
This article was adapted from an original article by A.F. Kharshiladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article